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A B S T R A C T   

In order to describe the fast-slow process such as a one-off discharge and bioconcentration on tissues and organs of toxic substances, a singular 
predator-prey model with toxic substances is proposed using the principles of biodynamics and ecotoxicology. And the stability conditions in ideal 
state are given. Then according to the principles of variable structure control, the variable structure controller is designed to make the populations 
persistent and the concentration of toxic substances small enough in the environment. Finally, some computer simulations are carried out to prove 
the results. The study provides not only the background for the singular system models, but also the theoretical basis for the management of toxic 
substances.   

1. Introduction 

With the development of industry and agriculture, the environmental pollution becomes more and more serious: the waste gas, 
waste water and waste residue with toxic substances in industry and the pesticide residues in agriculture. On the one hand, the toxic 
substances above are absorbed into animal bodies and not decomposed easily, they damage the tissues and organs by accumulating. On 
the other hand, the toxic substances have critical negative effects on eco-environment. It is necessary to study the effect of toxic 
substances on the populations and the eco-environment. 

As toxic substances, heavy metals are pollutants from various natural process (including erosion and weathering of the bedrock) 
and human activities (such as waste water from factory, exhaust fumes from vehicle and the residues of pesticide), accounting for more 
than 90% of total content in the aquatic ecosystems, which would inevitably cause severe entrophication and heavy metals pollution 
[1–3]. Due to the inherent toxicity, persistence and non-degradability, the contamination of heavy metals has been of great concern, 
many pollution events are reported on a global scale [4–10]. From the above, it is seen that the study on the contamination of heavy 
metals mainly focuses on the investigation and analysis of practical problems. But the dynamics models are few and the corresponding 
control models are fewer. 

In general, the discharge of toxic substances such as heavy metals may be divided into the two main ways: continuous and 
discontinuous. For the former, some ordinary differential equations [11] and partial differential equations [12] are used to describe the 
process; for the latter, some impulse differential equations [13,14] are often used to show the phenomenon. If the heavy metals are 
discharged into the river at one time, the system shows the fast process. While the hazards on human have a comparatively slow 
dynamics. A singular system model may be employed to describe the slow-fast process. A singular system model is coupled with 
differential equations and algebraic equations, in which differential equations and the algebraic equations are used to describe the slow 
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and the fast process, respectively. The earlier work on the topic is reflected in the books [15,16]. Between 1990s and 2000s, singular 
system models are applied mainly in the fields of economics [17], chemical process [18], aerospace engineering [19] and power 
systems [20,21], etc. In the last decade, some singular system models are also applied to describe biological economic systems [22–25]. 
But less study on the model with heavy metals is focused on the singular systems, especially scarce in the description of fast-slow 
process. 

With the development of control theory, more and more control methods are applied in some models with toxic substances, such as 
state feedback control [26] and adaptive control [27]. Compared with the control methods above, variable structure control has such 
advantages as simple algorithm, the higher reliability and the full self-adaption [28,29]. And it is often used to deal with some complex 
non-linear systems with uncertain parameters and external disturbances. Because the systems with toxic substances often show the 
above characteristics, the variable structure control is applied in the regulation of toxic substances in the paper, which provides the 
theoretical basis for the management of toxic substances. 

From the above, a singular system model is proposed to describe the fast-slow process such as a one-off discharge of heavy metals 
and the hazards on human; and then the variable structure controller is designed to reduce the contamination level of heavy metals to 
the environmental quality standard. 

2. Modeling 

In the natural world, heavy metals are absorbed into the animal bodies by means of diet and exposure, and decomposed difficultly. 
For example, due to the half life of 10–30 years, cadmium does great harm to liver, kidney by accumulating. Considering the potential 
danger of heavy metals to the tissues and organs, it is necessary to analyze their influence on the populations. 

First, suppose that there are the shrimp populations and the fish populations in a river, they are described as the predator-prey 
model [30] 

{
ẋ1(t) = rx1(t) − μ1x1(t)x2(t),
ẋ2(t) = μ10x1(t)x2(t) − μ20x2(t),

(2.1)  

where x1(t) is the density of the shrimp populations and x2(t) is the density of the fish populations at time t; in the absence of the fish 
populations, the shrimp populations grow unboundedly in a Malthusian way, which is described as the term rx1(t); the effect of the fish 
populations may reduce the shrimp populations, which is described as the term − μ1x1(t)x2(t); the contribution of shrimp populations 
to the fish populations is described as the term μ10x1(t)x2(t); in the absence of the shrimp populations, the death rate of the fish 
populations is − μ20; r, μ1, μ10 and μ20 are positive constants, μ1 ≥ μ10. 

According to the principles of biodynamics and ecotoxicology, the following assumptions are given. 

Assumption I. The heavy metal such as cadmium is discharged into a river at one time, d is the total concentration of cadmium 
emitted into the river. If y(t) is the concentration of cadmium at time t in the river, then 

ẏ(t) = lim
t→0

d − 0
▵t

= ∞. (2.2)  

The formula Eq. (2.2) means the change rate of cadmium in the river increases dramatically in a short time, that is, the system 
reaches a new balance as quickly as possible. 

Assumption II. Because the cadmium in the river can be absorbed by organisms and decomposed difficultly, with time going by, 

Fig. 2.1. Concentration distribution of cadmium.  
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there is more cadmium in the shrimp populations and the fish populations than that in the river, namely the bioconcentration [31], 
which can be described as the bioconcentration factor BCF. In fact, the BCF is related to the concentration of toxic substances in a body 
and that in the environment, which is given 

BCF =
A
D
. (2.3)  

where A is the concentration of toxic substances in a body; D is the concentration of toxic substances in the environment. Denote 
BCF of the shrimp populations as α and that of the fish populations as β. According to the literature [31], BCF becomes larger with the 
increase of trophic level, that is β > α(See Fig. 2.1). In Fig. 2.1, the term αy(t)x1(t), βy(t)x2(t) are the total concentration of cadmium in 
the shrimp populations and the fish populations at time t, respectively. 

Based on Assumptions I and II, the following model is employed to describe the fast process such as a one-off discharge 

d = y(t) + αy(t)x1(t) + βy(t)x2(t). (2.4)  

Assumption III. Since the bioconcentration of cadmium does harm to the shrimp populations and the fish populations. For the model 
Eq. (2.1), the influence rate of the cadmium on the shrimp populations is proportional to its concentration, and the corresponding 
factor is μ2 (μ2 > 0). Similarly, the influence rate of the cadmium on the fish populations is proportional to its concentration, and the 
corresponding factor is μ3 (μ3 > 0). According to the literature [31], BCF becomes larger with the increase of trophic level, that is μ3 
> μ2. Thus, the process above is described by the following model 

⎧
⎨

⎩

ẋ1(t) = rx1(t) − μ1x1(t)x2(t) − μ2αy(t)x1(t),

ẋ2(t) = μ10x1(t)x2(t) − μ20x2(t) − μ3βy(t)x2(t).
(2.5)   

Remark 2.1. Compared with the model Eq. (2.4), the model Eq. (2.5) shows the slow process of the system. 

Combing the model Eq. (2.4) with the model Eq. (2.5), a singular predator-prey model with toxic substances is obtained 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = rx1(t) − μ1x1(t)x2(t) − μ2αy(t)x1(t),

ẋ2(t) = μ10x1(t)x2(t) − μ20x2(t) − μ3βy(t)x2(t),

0 = y(t) + αy(t)x1(t) + βy(t)x2(t) − d,

x1(0) = x10 > 0,

x2(0) = x20 > 0,

y(0) = y0 > 0.

(2.6)  

where x10, x20, y0 are the corresponding initial values. 

Remark 2.2. For the model Eq. (2.6), the cadmium in the river is absorbed in the shrimp populations and the fish populations. The 
cadmium accumulates in the tissues and organs of human body by consuming the fish populations and the shrimp populations with 
cadmium, which has a potential hazard to human being. It is necessary to reduce the cadmium in the shrimp populations, the fish 
populations and the river as quickly as possible by some control means. 

In the following, the management model corresponding to the model Eq. (2.6) is proposed.  

• Control I One part of the cadmium may be removed by harvesting on fish populations with cadmium, u1(t) is the harvesting rate for 
the fish populations, the following model is got 

ẋ2(t) = μ10x1(t)x2(t) − μ20x2(t) − μ3βy(t)x2(t) − u1(t). (2.7)    

• Control II The other part of the cadmium may be removed by means of chemical precipitation or microorganisms removal, u2(t) is 
the rate of control related to the concentration, the following model is got 

0 = y(t) + αy(t)x1(t) + βy(t)x2(t) − d − y(t)u2(t). (2.8)   

According to Control I and Control II, the management model corresponding to the model Eq. (2.6) is obtained 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = rx1(t) − μ1x1(t)x2(t) − μ2αy(t))x2(t),

ẋ2(t) = μ10x1(t)x2(t) − μ20x2(t) − μ3βy(t)x2(t) − u1(t),

0 = y(t) + αy(t)x1(t) + βy(t)x2(t) − d − y(t)u2(t),

x1(0) = x10 > 0,

x2(0) = x20 > 0,

y(0) = y0 > 0,

(2.9)  

where r, μ1, μ2, μ10, μ20, μ3, α, β, d are the same as the above. 
For the models above, the following tasks are finished: For the model Eq. (2.6), the corresponding local stability is discussed using 

the stability theory of singular systems. For the model Eq. (2.9), the variable structure controller is designed to make the system stable 
at ideal state in finite time using the principles of variable structure control. Finally, some computer simulations are exerted to prove 
the results. 

3. Model analysis 

The model Eq. (2.6) is shortened as 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = rx1 − μ1x1x2 − μ2αx2y,

ẋ2 = μ10x1x2 − μ20x2 − μ3βx2y,

0 = y + αx1y + βx2y − d,

(3.1)  

where x1, x2, μ1, μ2, μ10, μ20,α, β have the same meaning as those in the model Eq. (2.9) 
The model Eq. (3.1) has the following equilibria, 

P∗
1(0, 0, d), P∗

2

(
μ2

r
d −

1
α, 0,

r
μ2α

)

, P∗
3

(
μ20 + μ3βy∗31

μ10
,
r − μ2αy∗1

μ1
, y∗1

)

Q∗
1

(

0, −
(

μ3

μ2
d +

1
β

)

, −
μ20

μ3β

)

, Q∗
2

(
μ20 + μ3βy∗2

μ10
,
r − μ2αy∗2

μ1
, y∗2

)

.

where y∗1, y∗2 are the roots of the equation 
(

μ3

μ10
−

μ2

μ1

)

αβy2 +

(

1 +
μ20α
μ10

+
rβ
μ1

)

y − d = 0.

For the equilibria above, the following theorem is given. 

Theorem 3.1. For the model Eq. (3.1),  

(1) the point P∗
1 is a non-negative equilibrium;  

(2) if r < μ2αd, then the point P∗
2 is a non-negative equilibrium;  

(3) if r− μ2αy∗1
μ1

> 0, then the point P∗
3 is a non-negative equilibrium;  

(4) the point Q∗
1 is a negative equilibrium;  

(5) if μ3 > μ2, then the point Q∗
2 is a negative equilibrium; 

if 
(

μ3
μ10

−
μ2
μ1

)〈
0, 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1 +

μ20α
μ10

+
rβ
μ1

)2
+ 4
(

μ3
μ10

−
μ2
μ1

)
αβd

√

> 0 and r− μ2αy∗1
μ1

> 0, then the point Q∗
2 is a non-negative equilibrium. 

Remark 3.1. In Theorem 3.1, if μ3 > μ2, then Q∗
2 is a negative equilibrium; And the point Q∗

1 is also a negative equilibrium. From the 
view of ecological meaning, the two points are omitted. 

For the model Eq. (3.1), let 

F(x, y) =

(
rx1 − μ1x1x2 − μ2αx1y

μ10x1x2 − μ20x2 − μ3βx2y

)

,

G(x, y) = y − αyx1 − βyx2 − d,
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where x = ( x1, x2 )
T. 

In the following, the local stability of the model Eq. (3.1) at the point P∗
1, the point P∗

2 and the point P∗
3 is discussed, respectively. 

3.1. The equilibrium P∗
1 

For the equilibrium P∗
1, the following theorem is given. 

Theorem 3.2. For the model Eq. (3.1),  

(a) If r < μ2αd, then the equilibrium P∗
1 is local stable;  

(b) If r > μ2αd, then the equilibrium P∗
1 is unstable. 

Proof. Because 

detDyG(x, y)|p∗1 = 1,

Jacobian matrix of the model Eq. (3.1) at the equilibrium P∗
1 is 

J|p∗1 =
(
DxF(x, y) − DyF(x, y)

(
DyG(x, y)

)− 1DxG(x, y)
)
|p∗1

=

(
r − μ2αd 0

0 − μ20 − μ3βd

)

.

The corresponding characteristic equation is 

(λ − (r − μ2αd))(λ − ( − μ20 − μ3βd)) = 0, (3.2)  

and the characteristic roots are 

λ1 = r − μ2αd, λ2 = − μ20 − μ3βd.

According to the literature [32], if r < μ2αd, then the equilibrium P∗
1 is locally stable; if r > μ2αd, then the equilibrium P∗

1 is 
unstable.□ 

3.2. The equilibrium P∗
2 

For the equilibrium P∗
2, the following theorem is given. 

Theorem 3.3. For the model Eq. (3.1),  

(a) If μ2αd < r, then the equilibrium P∗
2 is locally stable;  

(b) If μ2αd > r or μ10
rα (μ2αd − r) − μ20 −

μ3βr
μ2α > 0, then the equilibrium P∗

2 is unstable. 

Proof. Similar to the proof of Theorem 3.2, the characteristic equation of J|p∗2 
is 

(

λ −
r

μ2αd
(μ2αd − r)

)(

λ −
(

μ10

rα (μ2αd − r) − μ20 −
μ3βr
μ2α

))

= 0. (3.3) 

The corresponding characteristic roots are 

λ1 =
r

μ2αd
(μ2αd − r), λ2 =

μ10

rα (μ2αd − r) − μ20 −
μ3βr
μ2α .

According to the literature [32], if μ2αd < r, then the equilibrium P∗
2 is locally stable; if μ2αd > r or μ10

rα (μ2αd − r) − μ20 −
μ3βr
μ2α > 0, 

then the equilibrium P∗
2 is unstable.□ 

3.3. The equilibrium P∗
3 

For the equilibrium P∗
3, it is hard to study the corresponding local stability by means of the same analysis as the point P∗

1 and P∗
2, thus 

the point P∗
3 is studied using theorems in the literature [33]. 

According to the literature [33], the following lemmas are given. 

Lemma 3.1. If there exists a transformation 

χ = Qχ, (3.4) 
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then the model Eq. (3.1) is changed into 
⎧
⎨

⎩

ẋ1 = F1(χ),
ẋ2 = F2(χ),
0 = G(χ),

(3.5) 

where 

χ = (x1, x2, y)T
, χ = (x1, x2, y)T

,

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0

0 1 0

−
αy∗

1 + αx∗1 + βx∗2
−

βy∗

1 + αx∗1 + βx∗2
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

x∗1 =
μ20 + μ3βy∗

μ10
, x∗2 =

r − μ2αy∗

μ1
, M =

y∗

1 + αx∗1 + βx∗2
,

F1(χ) = rx1 + μ2α2Mx2
1 − (μ1 − μ2αβM)x1x2 − μ2αx1y,

F2(χ) = − μ20x2 + μ3β2Mx2
2 + (μ10 + μ3αβM)x1x2 − μ3βx2y,

G(χ) = − (DyG(χ))− 1

DxG(χ)ẋ

=
(
− αx1 − βx2 − α2x2

1 − β2x2
2 − 2αβx1x2

)
M + y + αx1y + βx2y − d,

(
DG(χ)|p∗3 Q =

(
0, 0, 1+αx∗1 + βx∗2

)
.

Lemma 3.2. For the model Eq. (3.5), the corresponding parameterized model is 

ξ̇ = Eξ + o(ξ), (3.6)  

where 

ξ = (ξ1, ξ2)
T
, E = UT

0

(

DF(x)|p∗3

)(
DG(x)

UT
0

)− 1

|p∗3

(
0
I2

)

.

χ = ψ(ξ) = χ∗
+ U0χ + V0h(χ), G(χ) = 0,

χ∗
=
(
x∗1, x

∗
2, y∗

)T
,U0 =

⎛

⎝
1 0
0 1
0 0

⎞

⎠,V0 =

⎛

⎝
0
0
1

⎞

⎠

and h(χ): R2→R1 is a smooth mapping. 

Proof. The Jacobian matrix Dψ(ξ) of the local parameterized function of the model Eq. (3.6) has size 3× 2. 
Differentiate G(ψ(ξ)) = 0, the following is got 

DG(χ)Dψ(ξ) = 0. (3.7) 

Differentiate the model Eq. (3.6) and premultiply both sides of the equation by UT
0 , the following is got 

UT
0 Dψ(ξ) = I2, (3.8)  

where I2 is an identity matrix. 

According to the literature [28], because det(DG(χ)V0) = 1+ αx1 + βx2 ∕= 0, thus 

(
DG(χ)

UT
0

)

is invertible. 

Combine the model Eq. (3.5) with the formula Eq. (3.7), the following is got 

Dψ(ξ) =
(

DG(χ)
UT

0

)− 1(
0
I2

)

. (3.9) 

Substitute χ = ψ(ξ) into the model Eq. (3.5), the following is got 
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Dψ(ξ)ξ̇ = F(ψ(ξ)). (3.10) 

Substitute the formula Eq. (3.9) into the formula Eq. (3.10), the following is got 
(

DG(χ)
UT

0

)− 1(
0
I2

)

ξ̇ = F(ψ(ξ)), (3.11) 

Thus 
(

0
I2

)

ξ̇ =

(
DG(χ)F(ψ(ξ))

UT
0 F(ψ(ξ))

)

=

(
0

UT
0 F(ψ(ξ))

)

, (3.12)  

the equivalent form of the model Eq. (3.12) is 

ξ̇ = UT
0 F(ψ(ξ)). (3.13)  

The Taylor expansion of the model Eq. (3.6) at the equilibrium P∗
3 is 

ξ̇ = Eξ + o(ξ), (3.14)  

where 

E = UT
0

(

DF(χ)|p∗3

)(
DG(χ)

UT
0

)− 1

|p∗3

(
0
I2

)

.

□ Based on Lemmas 3.1 and 3.2, the following theorem is given. 

Theorem 3.4. For the model Eq. (3.1), the point P∗
3 is unstable. 

Proof. For the equilibrium P∗
3, the following is got 

E =

(
μ2α2Mx∗1 − (μ1 − μ2αβM)x∗1

(μ10 + μ3αβM)x∗2 μ3β2Mx∗2

)

. (3.15) 

The corresponding characteristic equation is 

λ2 − D1λ + D2 = 0, (3.16)  

where D1 = (μ2α2x∗
1 + μ3β2x∗

2)M > 0, D2 = (μ1μ10 + (μ1μ3 − μ10μ2)αβMx∗
1x∗

2 > 0. 
The corresponding characteristic roots are 

λ1 =
D1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D2
1 − 4D2

√

2
, λ2 =

D1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

D2
1 − 4D2

√

2
(3.17) 

Due to λ1 > 0, λ2 > 0, thus the equilibrium P∗
3 is unstable.□ 

Remark 3.2. In Theorem 3.2, if r < μ2αd, then the equilibrium P∗
1 = (0,0, d) is stable, which indicates that the shrimp populations 

and the fish populations are about to extinct. Obviously, it is not the purpose of management. 

In Theorem 3.3, if μ2αd < r, the equilibrium P∗
2 =

(
μ2
r d − 1

α, 0,
r

μ2α

)
is stable, which indicates that the fish populations are about to 

extinct. It is not also the purpose of management. 

In Theorem 3.4, if the equilibrium P∗
3 =

(
μ20+μ3βy∗31

μ10
,

r− μ2αy∗1
μ1

, y∗1
)

is stable, which indicates that the shrimp populations and the fish 

populations are persistent; If the concentration of the cadmium is small enough, thus we think of the point P3 as the ideal state of 
management. 

In the following section, variable structure controller u = ( u1, u2 )
T is designed to make the system stable at equilibrium P∗

3. 

4. Controller design 

Consider the simplified model corresponding to the management model Eq. (2.9) 
⎧
⎨

⎩

ẋ1 = rx1 − μ1x1x2 − μ2αx1y,
ẋ2 = μ10x1x2 − μ20x2 − μ3βx2y − u1,

0 = y + αx1y + βx2y − d − yu2.

(4.1) 
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The corresponding matrix form is 

Eχ̇ = A(χ) + B(χ)u, (4.2)  

where 

χ =

⎛

⎝
x1
x2
y

⎞

⎠, A
(
χT) =

⎛

⎝
rx1 − μ1x1x2 − μ2αx1y

μ10x1x2 − μ20x2 − μ3βx2y
y + αx1y + βx2y − d

⎞

⎠,

E =

⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠, B(χ) =

⎛

⎝
0 0
− 1 0
0 − y

⎞

⎠, u =

(
u1
u2

)

.

Before the controller is designed, the model Eq. (4.1) should be normalized. 

4.1. Normalization of the model 

Take 

u = − K2(χ)χ̇ + u∗, (4.3)  

where u∗ = (u∗
1, u∗

2)
T is a new control input of the model. 

Choose 

K2(χ) =

⎛

⎝
0 0 0

0 0 −
1
y

⎞

⎠

such that 

det(E + BK2(χ)) ∕= 0.

thus, the normalized model corresponding to the model Eq. (4.1) is 
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = rx1 − μ1x1x2 − μ2αx1y,
ẋ2 = μ10x1x2 − μ20x2 − μ3βx2y − u∗

1,

ẏ = y + αx1y + βx2y − d − yu∗
2.

(4.4) 

For the model Eq. (4.4), let x1 = x1 − x∗
1, x2 = x2 − x∗

2, y = y − y∗, the following is got 
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = r
(
x1 + x∗1

)
− μ1

(
x1 + x∗1

)(
x2 + x∗2

)
− μ2α

(
x1 + x∗1

)
(y + y∗),

ẋ2 = μ10
(
x1 + x∗1

)(
x2 + x∗2

)
− μ20

(
x2 + x∗2

)
− μ3β

(
x2 + x∗2

)
(y + y∗) − u∗

1,

ẏ = (y + y∗) + α
(
x1 + x∗1

)
(y + y∗) + β

(
x2 + x∗2

)
(y + y∗) − d − (y + y∗)u∗

2.

(4.5) 

The corresponding matrix form is 

χ̇ = A(χ) + B(χ)u∗, (4.6)  

where 

χ = (x̃1, x̃2, ỹ)T
, B̃(χ̃) =

⎛

⎜
⎝

0 0
− 1 0
0 − (ỹ + y∗)

⎞

⎟
⎠,

Ã(χ̃) =

⎛

⎜
⎜
⎜
⎝

r
(
x̃1 + x∗1

)
− μ1

(
x̃1 + x∗1

)(
x̃2 + x∗2

)
− μ2α

(
x̃1 + x∗1

)
(̃y + y∗)

μ10
(
x̃1 + x∗1

)(
x̃2 + x∗2

)
− μ20

(
x̃2 + x∗2

)
− μ3β

(
x̃2 + x∗2

)
(ỹ + y∗)

(ỹ + y∗) + α
(
x̃1 + x∗1

)
(ỹ + y∗) + β

(
x̃2 + x∗2

)
(̃y + y∗) − d

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎝

Ã1(χ̃)
Ã2(χ̃)
Ã3(χ̃)

⎞

⎟
⎠.

According to the literature [28], the following is got 
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R(χ) =
(

b1, b(1)
1A(χ),b2

)
,

where b1, b2 are the first, the second column of the matrix B(χ), respectively, and 

b(1)
1A(χ) = ∇A(χ)b1 − ∇b1A(χ),

where ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂y

)
. 

That is 

R(χ) =

⎛

⎜
⎜
⎝

0 μ1
(
x1 + x∗1

)
0

− 1 −
(
μ10
(
x1 + x∗1

)
− μ3β(y + y∗) − μ20

)
0

0 − β(y + y∗) − (y + y∗)

⎞

⎟
⎟
⎠.

where x1 + x∗
1 = x1 ∕= 0. 

Remark 4.1. x1 = 0 means the shrimp populations are about to extinct, x1 ∕= 0 is the purpose of management. 

Obviously, R(χ) is full rank, whose singular inverse matrix is 

[R(χ)]− 1
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
μ10
(
x1 + x∗1

)
− μ3β(y + y∗) − μ20

μ1(y + y∗)
− 1 0

1
μ1
(
x1 + x∗1

) 0 0

−
β

μ1
(
x1 + x∗1

) 0 −
1

(y + y∗)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let 

[R(χ)]− 1
2 =

(
1

μ1(x1 + x∗1)
, 0, 0

)

, [R(χ)]− 1
3 =

(

−
β

μ1(x1 + x∗1)
, 0, −

1
(y + y∗)

)

the primitive functions of [R(χ)]− 1
2 and [R(χ)]− 1

3 are 

1
μ1

ln
(
x1 + x∗1

)
+ c∗1 =

∫

[R(χ)]− 1
2 dχ,

−
β
μ1

ln
(
x1 + x∗1

)
− ln(y + y∗) + c∗2 =

∫

[R(χ)]− 1
3 dχ.

Take 

T1(χ) =
∫

[R(χ)]− 1
2 dχ,

T2(χ) = [R(χ)]− 1
3 A(χ),

T3(χ) =
∫

[R(χ)]− 1
3 dχ.

(4.7) 

Let 

T(χ) =

⎛

⎝
T1(χ)
T2(χ)
T3(χ)

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
μ1

ln
(
x1 + x∗1

)
+ c∗1

r
μ1

−
(
x2 + x∗22

)
−

μ2α
μ1

(y + y∗)

−
β
μ1

ln
(
x1 + x∗1

)
− ln(y + y∗) + c∗2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.8) 

According to the literature [28], choose the transformation matrix T(χ) and denote x̂1 = T1(χ), x̂2 = T2(χ), ŷ = T3(χ), χ̂ =

(x̂1, x̂2, ŷ)T
, the following theorem is obtained. 

Theorem 4.1. For the model Eq. (4.6), the state transformation χ→χ̂ : χ̂ = T(χ) :
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χ̂ =

⎛

⎝
x̂1
x̂2
ŷ

⎞

⎠ =

⎛

⎝
T1(χ)
T2(χ)
T3(χ)

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
μ1

ln
(
x1 + x∗1

)
+ c∗1

r
μ1

−
(
x2 + x∗22

)
−

μ2α
μ1

(y + y∗)

−
β
μ1

ln
(
x1 + x∗1

)
− ln(y + y∗) + c∗2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.9)  

makes the model into 

⎛

⎝

˙̂x1
˙̂x2
˙̂y

⎞

⎠ =

⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
x̂1
x̂2
ŷ

⎞

⎠+

⎛

⎝
0

η1(χ)
η2(χ)

⎞

⎠+

⎛

⎜
⎜
⎜
⎝

0 0

1
μ2α
μ1

(y + y∗)

0 1

⎞

⎟
⎟
⎟
⎠

(
u∗

1

u∗
2

)

, (4.10)  

where 

η1(χ) = − A2(χ) −
μ2α
μ1

A3(χ), η2(χ) = −
β

μ1(y + y∗)
A1(χ) −

1
(y + y∗)

A3(χ).

Proof. Differentiate the formula Eq. (4.9), the following is given 
⎛

⎝

˙̂x1
˙̂x2
˙̂y

⎞

⎠ =

⎛

⎝
Ṫ1(χ)
Ṫ2(χ)
Ṫ3(χ)

⎞

⎠ =

⎛

⎝
∇T1(χ)A(χ)
∇T2(χ)A(χ)
∇T3(χ)A(χ)

⎞

⎠+

⎛

⎝
∇T1

(
χT)B

(
χT)

∇T2
(
χT)B

(
χT)

∇T3
(
χT)B

(
χT)

⎞

⎠u∗. (4.11)  

where 

∇T1(χ)A
(
χT)

=
r
μ1

−
(
x2 + x∗22

)
−

μ2α
μ1

(y + y∗), ∇T2(χ)A(χ) = − A2(χ) −
μ2α
μ1

A3(χ),

∇T3(χ)A(χ) = −
β

μ1(y + y∗)
A1(χ) −

1
(y + y∗)

A3(χ),

∇T1(χ)B(χ) = (0, 0), ∇T2(χ)B(χ) =
(

1,
μ2α
μ1

(y+ y∗)
)

, ∇T3(χ)B(χ) = (0, 1).

Obviously, ∇T1(χ)A(χ) = T2(χ) = x̂2. 
Let 

η1(χ) = − A2(χ) −
μ2α
μ1

A3(χ),

η2(χ) = −
β

μ1(y + y∗)
A1(χ) −

1
(y + y∗)

A3(χ).

Thus, the controllability canonical form of the model Eq. (2.3) is 

⎛

⎝

˙̂x1
˙̂x2
˙̂y

⎞

⎠ =

⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠

⎛

⎝
x̂1
x̂2
ŷ

⎞

⎠+

⎛

⎝
0

η1(χ)
η2(χ)

⎞

⎠+

⎛

⎜
⎜
⎜
⎝

0 0

1
μ2α
μ1

(y + y∗)

0 1

⎞

⎟
⎟
⎟
⎠

(
u∗

1

u∗
2

)

.

□ Based on the above, the controller is designed in the following section. 

4.2. Controller design 

According to the theory of variable structure control, controller is designed not only to make the shrimp populations and the fish 
populations persist, but also to reduce the concentration of cadmium in the recommended limits for human consumption as soon as 
possible. The specific steps are as follows:  

• Step 1 Choice of switching function  
(1) The model Eq. (4.10) is decomposed into the following models 
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(
˙̂x1
˙̂x2

)

=

(
0 1
0 0

)(
x̂1
x̂2

)

+

(
0

η1(χ)

)

+

⎛

⎝
0 0

1
μ2α
μ1

(y + y∗)

⎞

⎠

(
u∗

1

u∗
2

)

. (4.12)  

˙̂y = ŷ + η2(χ) + u∗
2. (4.13)    

(2) Take the switching function 

s(χ) = ( s1(χ), s2(χ) )T
= ( cx̂1 + x̂2, ŷ )T (4.14)  

where c is a constant.  
• Step 2 Design of controller 

Let s1(χ) = 0, s2(χ) = 0 and combine s1(χ) = 0 with the model Eq. (4.10), the following is got 
⎧
⎨

⎩

x̂1 = e− ct,

x̂2 = − ce− ct,

ŷ = 0.
(4.15)   

If c > 0, then lim
t→∞

(x̂1, x̂2, ŷ) = (0,0,0), that is, the sliding mode s(χ) = 0 of the model Eq. (4.10) is asymptotically stable at the point 

(0,0,0). 
Differentiate s1(χ) along the model Eq. (4.11), the following is got 

ṡ1(χ) = c ˙̂x1 +
˙̂x2 = cx̂2 + η1(χ) + u∗

1 +
μ2α
μ1

(y+ y∗)u∗
2, (4.16) 

Differentiate s2(χ) along the model Eq. (4.12), the following is got 

ṡ2(χ) = ˙̂y = η2(χ) + u∗
2. (4.17) 

Take the exponential approach laws 

ṡ1(χ) = − ε1sgns1(χ) − k1s1(χ), (4.18)  

ṡ2(χ) = − ε2sgns2(χ) − k2s2(χ), (4.19)  

where ε1, ε2, k1, k2 are positive. 
It is easy to prove that s1(χ)ṡ1(χ) < 0 and s2(χ)ṡ2(χ) < 0, thus s(χ) = 0 is global stable. 
According to the literature [28], combine the formula Eq. (4.15) with the formula Eq. (4.17); And combine the formula Eq. (4.16) 

with the formula Eq. (4.18), respectively, the controller u∗ = ( u∗
1, u

∗
2 )

T of the model Eq. (4.10) is taken as 

u∗
1 = − ε1sgns1(χ) − k1s1(χ) − cx̂2 − η1(χ)

−
μ2α
μ1

(y + y∗)( − ε2sgns2(χ) − k2s2(χ) − η2(χ))
(4.20)  

u∗
2 = − ε2sgns2(χ) − k2s2(χ) − η2(χ). (4.21)  

Remark 4.2. In Step 2, because s(χ) = 0 is global stable, take the sliding mode as the switching surface. It is worth noting that they 
may be different. 

According to the steps above, the main theorems of the paper are obtained. 

Theorem 4.2. For the model Eq. (4.10), the control 

u∗ =

⎛

⎝
u∗

1

u∗
2

⎞

⎠

=

⎛

⎜
⎝

− ε1sgns1(χ) − k1s1(χ) − cx̂2 − η1(χ −
μ2α
μ1

(y + y∗)( − ε2sgns2(χ) − k2s2(χ) − η2(χ))

− ε2sgns2(χ) − k2s2(χ) − η2(χ).

⎞

⎟
⎠

makes the trajectories of the model reach the switching surface s(χ) = 0 in finite time 
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t∗ = max
(

1
k1

ln
(

ε1 + k1|s10|

ε1

)

,
1
k2

ln
(

ε2 + k2|s20|

ε2

))

.

where ε1, ε2, k1, k2 are parameters. 

Proof. For the model Eq. (4.11), the following two cases are discussed 
case 1 s1(χ) > 0 
If s1(χ) > 0, then 

ṡ1(χ) = − ε1 − k1s1(χ).

The corresponding solution is 

s1(χ) =
(

s10 +
ε1

k1

)

e− k1 t1 −
ε1

k1
,

where s10 is the initial value of s1(χ). 
Let s1(χ) = 0, the followings are got 

t1 = t∗1 =
1
k1

ln
(

ε1 + k1s10

ε1

)

, ṡ1(χ) = − ε1 

case 2 s1(χ) < 0 
If s1(χ) < 0, then 

ṡ1(χ) = ε1 − k1s1(χ).

The corresponding solution is 

s1(χ) =
(

s10 −
ε1

k1

)

e− k1 t1 +
ε1

k1
.

Let s1(χ) = 0, the followings are got 

t1 = t∗∗1 =
1
k1

ln
(

ε1 + k1s10

ε1

)

, ṡ1(χ) = − ε1 

In short, the trajectories of the model Eq. (4.10) may reach the surface s1(χ) = 0 in finite time t∗1 = max{̃t∗1, t̃
∗∗

1 } = 1
k1

ln
(

ε1+k1 |s10 |
ε1

)
, 

where s10 is the initial value of s1(χ). 
Similarly, the trajectories of the model Eq. (4.10) may reach the surface s2(χ) = 0 in finite time t∗2 = 1

k2
ln
(

ε2+k2 |s20 |
ε2

)
, where s20 is the 

initial value of s2(χ). 
Let t∗ = max{t∗1, t∗2} = max

(
1
k1

ln
(

ε1+k1 |s10 |
ε1

)
, 1

k2
ln
(

ε2+k2 |s20 |
ε2

))
, thus the trajectories of the model Eq. (4.10) may reach the switching 

surface s(χ) = 0 in finite time t∗.□ 

Remark 4.3. If ε1, ε2 are reduced, then the trajectories of the model Eq. (4.10) enters into the switching surface s(χ) = 0 as soon as 
possible; If k1, k2 are increased, the corresponding vibration is weaken. 

Further, the following theorem is obtained. 

Theorem 4.3. For the model Eq. (4.10), if the conditions in Theorem 4.2 are satisfied, then the model is asymptotically stable at the point 
(0,0,0). 

According to the control Eq. (4.3), the variable structure controller u = (u1, u2) of the model Eq. (4.1) is obtained 

u =

(

u1

u2

)

=

⎛

⎜
⎜
⎜
⎝

− ε1sgns1(χ) − k1s1(χ) − cx̂2 − η1(χ) −
μ2α
μ1

(y + y∗)( − ε2sgns2(χ) − k2s2(χ) − η2(χ))

−
1
y
ẏ − ε2sgns2(χ) − k2s2(χ) − η2(χ).

⎞

⎟
⎟
⎟
⎠

Thus, the following is got: 

Theorem 4.4. For the model Eq. (4.1), the variable structure control 
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u =

(
u1

u2

)

=

⎛

⎜
⎜
⎜
⎝

− ε1sgns1(χ) − k1s1(χ) − cx̂2 − η1(χ) −
μ2α
μ1

(y + y∗)( − ε2sgns2(χ) − k2s2(χ) − η2(χ))

−
1
y
ẏ − ε2sgns2(χ) − k2s2(χ) − η2(χ).

⎞

⎟
⎟
⎟
⎠

makes the trajectory of the model reach the switching surface s(χ) = 0 in finite time 

t = max
(

1
k1

ln
(

ε1 + k1|s10|

ε1

)

,
1
k2

ln
(

ε2 + k2|s20|

ε2

))

,

and the model with small y∗ stable at equilibrium P∗
3. Where ε1 > 0, ε2 > 0, k1 > 0, k2 > 0, c > 0, In the next section, the further dis

cussions are given. 

5. Discussions 

Take coefficients of the model Eq. (3.1) and the model Eq. (4.1) as follows (See Table 5.1). 
By MATLAB Software, the time responses of the model Eq. (3.1) and the model Eq. (4.1) at the equilibrium P∗

3 are got. 
Theorem 3.4 shows that the existence of the cadmium in the environment leads to the extinction of fish populations as time goes by 

(See Fig. 4.1). On the other hand, it shows that the cadmium in the environment has more effect on the fish populations than the shrimp 
populations if the cadmium increases abruptly. In order to avoid the phenomenon, the controller is designed by regulating the cad
mium in the body of fish populations and in the environment (See Theorem 4.2). 

The result (In Theorem 4.2) shows that the model Eq. (4.1) with control is stable at the equilibrium P∗
3, which means that the shrimp 

populations and the fish populations stabilize in the ideal state as quickly as possible and the concentration of the cadmium in the 
environment reduces to the environmental quality standard as soon as possible (See Fig. 4.2). 

In short, the study in the paper shows the following two highlights: One is that the fast-slow process such as a one-off discharge and 
bioconcentration on tissues and organs of toxic substances is described by a singular predator-prey model; the other is that the variable 

Table 5.1 
The values of coefficients.  

r μ1 μ10 μ20 d α β μ2 μ3 c k1 k2 ε1 ε2 

0.66 0.3 0.25 0.1 0.5 150 300 0.0001 0.0015 1 0.3 0.1 0.2 0.1  

Fig. 4.1. Time response of the model Eq. (3.1) at the equilibrium P∗
3.  
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structure control is used to make the system in the ideal state as quickly as possible and cut the cost of control. However, whether a one- 
off discharge of toxic substances leads to the catastrophe of the system and whether the variable structure control is used to control the 
catastrophe, which is our work in the future. 
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