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ABSTRACT

In order to describe the fast-slow process such as a one-off discharge and bioconcentration on tissues and organs of toxic substances, a singular
predator-prey model with toxic substances is proposed using the principles of biodynamics and ecotoxicology. And the stability conditions in ideal
state are given. Then according to the principles of variable structure control, the variable structure controller is designed to make the populations
persistent and the concentration of toxic substances small enough in the environment. Finally, some computer simulations are carried out to prove
the results. The study provides not only the background for the singular system models, but also the theoretical basis for the management of toxic
substances.

1. Introduction

With the development of industry and agriculture, the environmental pollution becomes more and more serious: the waste gas,
waste water and waste residue with toxic substances in industry and the pesticide residues in agriculture. On the one hand, the toxic
substances above are absorbed into animal bodies and not decomposed easily, they damage the tissues and organs by accumulating. On
the other hand, the toxic substances have critical negative effects on eco-environment. It is necessary to study the effect of toxic
substances on the populations and the eco-environment.

As toxic substances, heavy metals are pollutants from various natural process (including erosion and weathering of the bedrock)
and human activities (such as waste water from factory, exhaust fumes from vehicle and the residues of pesticide), accounting for more
than 90% of total content in the aquatic ecosystems, which would inevitably cause severe entrophication and heavy metals pollution
[1-3]. Due to the inherent toxicity, persistence and non-degradability, the contamination of heavy metals has been of great concern,
many pollution events are reported on a global scale [4-10]. From the above, it is seen that the study on the contamination of heavy
metals mainly focuses on the investigation and analysis of practical problems. But the dynamics models are few and the corresponding
control models are fewer.

In general, the discharge of toxic substances such as heavy metals may be divided into the two main ways: continuous and
discontinuous. For the former, some ordinary differential equations [11] and partial differential equations [12] are used to describe the
process; for the latter, some impulse differential equations [13,14] are often used to show the phenomenon. If the heavy metals are
discharged into the river at one time, the system shows the fast process. While the hazards on human have a comparatively slow
dynamics. A singular system model may be employed to describe the slow-fast process. A singular system model is coupled with
differential equations and algebraic equations, in which differential equations and the algebraic equations are used to describe the slow
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Fig. 2.1. Concentration distribution of cadmium.

and the fast process, respectively. The earlier work on the topic is reflected in the books [15,16]. Between 1990s and 2000s, singular
system models are applied mainly in the fields of economics [17], chemical process [18], aerospace engineering [19] and power
systems [20,21], etc. In the last decade, some singular system models are also applied to describe biological economic systems [22-25].
But less study on the model with heavy metals is focused on the singular systems, especially scarce in the description of fast-slow
process.

With the development of control theory, more and more control methods are applied in some models with toxic substances, such as
state feedback control [26] and adaptive control [27]. Compared with the control methods above, variable structure control has such
advantages as simple algorithm, the higher reliability and the full self-adaption [28,29]. And it is often used to deal with some complex
non-linear systems with uncertain parameters and external disturbances. Because the systems with toxic substances often show the
above characteristics, the variable structure control is applied in the regulation of toxic substances in the paper, which provides the
theoretical basis for the management of toxic substances.

From the above, a singular system model is proposed to describe the fast-slow process such as a one-off discharge of heavy metals
and the hazards on human; and then the variable structure controller is designed to reduce the contamination level of heavy metals to
the environmental quality standard.

2. Modeling

In the natural world, heavy metals are absorbed into the animal bodies by means of diet and exposure, and decomposed difficultly.
For example, due to the half life of 10-30 years, cadmium does great harm to liver, kidney by accumulating. Considering the potential
danger of heavy metals to the tissues and organs, it is necessary to analyze their influence on the populations.

First, suppose that there are the shrimp populations and the fish populations in a river, they are described as the predator-prey
model [30]

X1(1) = rxi (1) — pyx (0)x2(2),
{xm = a1 (52 (1) — oy (1), (1)

where x; (t) is the density of the shrimp populations and x(t) is the density of the fish populations at time ¢; in the absence of the fish
populations, the shrimp populations grow unboundedly in a Malthusian way, which is described as the term rx; (t); the effect of the fish
populations may reduce the shrimp populations, which is described as the term — y;x; (t)x2(t); the contribution of shrimp populations
to the fish populations is described as the term u;,x;(t)x2(t); in the absence of the shrimp populations, the death rate of the fish
populations is — pqg; T, fiq, fi19 and p,, are positive constants, p; > yq,.

According to the principles of biodynamics and ecotoxicology, the following assumptions are given.

Assumption I. The heavy metal such as cadmium is discharged into a river at one time, d is the total concentration of cadmium
emitted into the river. If y(t) is the concentration of cadmium at time t in the river, then

¥(t) = lim = co. (2.2)

=0 Af

The formula Eq. (2.2) means the change rate of cadmium in the river increases dramatically in a short time, that is, the system
reaches a new balance as quickly as possible.

Assumption II. Because the cadmium in the river can be absorbed by organisms and decomposed difficultly, with time going by,
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there is more cadmium in the shrimp populations and the fish populations than that in the river, namely the bioconcentration [31],
which can be described as the bioconcentration factor BCF. In fact, the BCF is related to the concentration of toxic substances in a body
and that in the environment, which is given

A
BCF = o (2.3)

where A is the concentration of toxic substances in a body; D is the concentration of toxic substances in the environment. = Denote
BCF of the shrimp populations as a and that of the fish populations as . According to the literature [31], BCF becomes larger with the
increase of trophic level, thatis # > a(See Fig. 2.1). In Fig. 2.1, the term ay(t)x; (t), By(t)x2(t) are the total concentration of cadmium in
the shrimp populations and the fish populations at time ¢, respectively.

Based on Assumptions I and 1II, the following model is employed to describe the fast process such as a one-off discharge
d =y(t) + ay(t)x: (t) + By()x2(1). 2.4
Assumption III.  Since the bioconcentration of cadmium does harm to the shrimp populations and the fish populations. For the model
Eq. (2.1), the influence rate of the cadmium on the shrimp populations is proportional to its concentration, and the corresponding
factor is y, (i, > 0). Similarly, the influence rate of the cadmium on the fish populations is proportional to its concentration, and the

corresponding factor is s (5 > 0). According to the literature [31], BCF becomes larger with the increase of trophic level, that is y
> p,. Thus, the process above is described by the following model

%1 (1) = rx (1) = 2 (0 (1) = poay(1)x (1),

(2.5)
(1) = pox1 (Dx2(2) = Hagha (1) — pa Py ()2 (0).

Remark 2.1. Compared with the model Eq. (2.4), the model Eq. (2.5) shows the slow process of the system.
Combing the model Eq. (2.4) with the model Eq. (2.5), a singular predator-prey model with toxic substances is obtained
x1(t) = rxi (1) — pyxa (8)x2(1) — poay(1)x (1),
%a(t) = piox1 (D22 (1) — papx2(t) — p3 By ()x2(2),
0 =y(1) + ay(O)x: (1) + By(1)x2(1) — d,
(2.6)

X1 (0) = X10 > 07

Xz(o) = X0 > 0,

¥(0) = yo > 0.

where x10, X20,Y0 are the corresponding initial values.

Remark 2.2. For the model Eq. (2.6), the cadmium in the river is absorbed in the shrimp populations and the fish populations. The
cadmium accumulates in the tissues and organs of human body by consuming the fish populations and the shrimp populations with
cadmium, which has a potential hazard to human being. It is necessary to reduce the cadmium in the shrimp populations, the fish
populations and the river as quickly as possible by some control means.

In the following, the management model corresponding to the model Eq. (2.6) is proposed.

e Control I One part of the cadmium may be removed by harvesting on fish populations with cadmium, u; (t) is the harvesting rate for
the fish populations, the following model is got

%2(1) = pyox1 (1)x2(1) — popx2(t) — p3By(1)x2(2) — s (). 2.7

e Control II The other part of the cadmium may be removed by means of chemical precipitation or microorganisms removal, u(t) is
the rate of control related to the concentration, the following model is got

0 =y(1) + ay()x (1) + py(0)x (1) — d = y(O)us (1). (2.8)

According to Control I and Control II, the management model corresponding to the model Eq. (2.6) is obtained
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X1 (1) = rx (1) — pyx ()x2 (1) — poay(t))xa(1),
Xo(t) = pyox1 (%2 () — paga (t) — 3y () x2(t) — ua (2),
0 =y(t) + ay(t)x; (1) + By()xa(t) — d — y()ux(2),
(2.9)
x1(0) =x;0 >0,

XQ(O) = Xp0 > O7

¥(0) =y >0,

where 1, jiq, Ha, H10> Haos H3> @, B, d are the same as the above.

For the models above, the following tasks are finished: For the model Eq. (2.6), the corresponding local stability is discussed using
the stability theory of singular systems. For the model Eq. (2.9), the variable structure controller is designed to make the system stable
at ideal state in finite time using the principles of variable structure control. Finally, some computer simulations are exerted to prove
the results.

3. Model analysis
The model Eq. (2.6) is shortened as
X| = X — [ X1X — [p0x2,
Xo = HypX1Xa — PagXa — 3 P2y, 3.1
0=y+ax)y+prxy—d,

where x1, X2, {y, Ha, Hig, Hag,@, P have the same meaning as those in the model Eq. (2.9)
The model Eq. (3.1) has the following equilibria,

) 1 3 — -
P;(0,0,d), Pé(’ﬁd——,o,i) P;("Z‘J”-‘ﬁy Lr ”ZayHyT)

r a  jha Hio H
" Hs 1 Hao (Moo Py, T =y
Q (0’7<7d+7>57 )7 Q( k] 5 ), .
: Hy B Hsp ? Hio H :

where y7,y; are the roots of the equation

<”—37’ﬁ)a/}y2 + <l +ﬂzoa+1}>yfd: 0.
Mo Ho

For the equilibria above, the following theorem is given.
Theorem 3.1. For the model Eq. (3.1),

(1) the point P; is a non-negative equilibrium;

(2) if r < pyad, then the point P; is a non-negative equilibrium;

3) if % > 0, then the point P} is a non-negative equilibrium;

(4) the point Qj is a negative equilibrium;

(5) if ug > p,, then the point Q; is a negative equilibrium;

2 .
. Hy _ Ho Hao® | TP Hy _ Ho r—pyay’ . s ~ . T
if (}—‘130 ”12) <0, \/ (1 + —;1"0 + M) + 4<;—‘130 ”f)a/fd > 0 and — 1 > 0, then the point Qj is a non-negative equilibrium.

Remark 3.1. InTheorem 3.1, if 3 > u,, then Qj is a negative equilibrium; And the point Qj is also a negative equilibrium. From the
view of ecological meaning, the two points are omitted.

For the model Eq. (3.1), let
Xy — fX1xX2 — Hraxyy
F(x,y) = ( )
HioX1X2 — flogX2 — psfxay

G(x,y) =y — ayx; — fyx; — d,
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where x = (x1,x2)".
In the following, the local stability of the model Eq. (3.1) at the point Pj, the point P} and the point P} is discussed, respectively.

3.1. The equilibrium P;

For the equilibrium Pj, the following theorem is given.

Theorem 3.2. For the model Eq. (3.1),
(a) If r < pyad, then the equilibrium Pj is local stable;
(b) If r > pyad, then the equilibrium P; is unstable.
Proof. Because
detD,G(x, ), = 1,

Jacobian matrix of the model Eq. (3.1) at the equilibrium P} is

le*l‘ = (DXF(X7y) - DyF(Xﬁy) (DyG(X,’_y))ileG(XJ/))

B ( r— u,ad 0 >
0 —p — Hspd )

The corresponding characteristic equation is

(A= (r—pad)) (A — (= ppy — u35d)) = 0, (3.2)

+
P

and the characteristic roots are
M =r—pwoad, = —, —puspd.

According to the literature [32], if r < y,ad, then the equilibrium P; is locally stable; if r > u,ad, then the equilibrium P; is
unstable.[]

3.2. The equilibrium P}

For the equilibrium Pj, the following theorem is given.

Theorem 3.3. For the model Eq. (3.1),

(a) If uyad < r, then the equilibrium P; is locally stable;

(b) If pyad > r or £ (uyad —1) — pigg — %’g > 0, then the equilibrium P} is unstable.

Proof. Similar to the proof of Theorem 3.2, the characteristic equation of J |p; is

(,1 - ”zﬁ (mad — r)> (1 - (’% (o0 — 1) — ping J}‘;f;)) —o. 3.3)

The corresponding characteristic roots are

Hapr
(usad 1) — iy 25"
2 07

Hio

A =10
ra

r
=— d — A
ﬂzad(ﬂza r)? 2

According to the literature [32], if u,ad < r, then the equilibrium P; is locally stable; if y,ad > r or 22 (uyad — 1) — pyy — 1wt ,

Mo
then the equilibrium P} is unstable.[]

3.3. The equilibrium P}

For the equilibrium P}, it is hard to study the corresponding local stability by means of the same analysis as the point P; and Pj, thus
the point Pj is studied using theorems in the literature [33].
According to the literature [33], the following lemmas are given.

Lemma 3.1. If there exists a transformation

x=Qx (3.4



L. Zhao et al. Journal of the Franklin Institute xxx (xxxx) Xxx

then the model Eq. (3.1) is changed into
x = Fi(%),
% = Fa2 (%), (3.5)
0=G(x).

where

1 0 0
0 1 0
Q = * *
ay By |
14+ax;+px; 14+ax;+px;
Hyo H I+ ax; +fx;
Fi(X) =% Jr/420’21”3% — () — uapM)Z\ Xy — p, 0%, 3,
Fa(X) = —Ha¥a +P‘3ﬂ2Mf§ + (H1o + H3aPM)T1 % — p3 5%, DrG(X)X

G(x) = -(DsG(x)
= (—ax —fx — o'%] — 7%, — 20BT %)M + 5 + axy + fry — d,

(PG@)1,,Q = (0,01 +ax; +x3).

Lemma 3.2. For the model Eq. (3.5), the corresponding parameterized model is
§=E&+0(%), (3.6)

where

and h(¥): R>—R! is a smooth mapping.

Proof. The Jacobian matrix Dy/(&) of the local parameterized function of the model Eq. (3.6) has size 3 x 2.
Differentiate G(y/(&)) = 0, the following is got

DG(%)Dy (§) = 0. 3.7)
Differentiate the model Eq. (3.6) and premultiply both sides of the equation by Uy, the following is got

UyDy (§) = L, (3.8)
where I, is an identity matrix.

T

According to the literature [28], because det(DG(¥)Vo) = 1+ ax; + fixz # 0, thus <D?J(X) > is invertible.
0

Combine the model Eq. (3.5) with the formula Eq. (3.7), the following is got

ower- ("5 (1) @9

Substitute % = w(&) into the model Eq. (3.5), the following is got
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Dy/(8)€ = F(y(&)). (3.10)
Substitute the formula Eq. (3.9) into the formula Eq. (3.10), the following is got
— -1
p6@\ (0. -
( o ) (1, )e=Fu@). (311
Thus
0, DG(¥)F(y()) 0
— ~) - _ , (3.12)
(r)t ( UFw(®) ) (UE.F(w(&)))
the equivalent form of the model Eq. (3.12) is
&= UF(y(¢)) (3.13)

The Taylor expansion of the model Eq. (3.6) at the equilibrium Pj is

E=EE+o0(Z), (3.14)

E_Ul (Dwm,,;) (Df](;) ) (10 ) '

[0 Based on Lemmas 3.1 and 3.2, the following theorem is given.

where

Theorem 3.4. For the model Eq. (3.1), the point P} is unstable.

Proof. For the equilibrium P3, the following is got

E— ﬂzazMxT ) =y = gzaéM)xT ) (3.15)
(k1o + p30BM)x; Haf"Mx;,
The corresponding characteristic equation is
2 —DA+D, =0, (3.16)

where D1 = (4p0®x} + p3/*x3)M > 0, Dy = (uypso + (Hapts — HioHo)apMXi X3 > O.
The corresponding characteristic roots are

D, ++/D* — 4D, D, —/D* — 4D,
- ! : : (3.17)

M= d =
! 2 2 2

Due to 4; > 0, 4, > 0, thus the equilibrium P; is unstable.[]

Remark 3.2. In Theorem 3.2, if r < p,ad, then the equilibrium Pj = (0,0, d) is stable, which indicates that the shrimp populations
and the fish populations are about to extinct. Obviously, it is not the purpose of management.

In Theorem 3.3, if y,ad < r, the equilibrium P} = (‘de -1o,-r ) is stable, which indicates that the fish populations are about to

r @ pya
extinct. It is not also the purpose of management.
In Theorem 3.4, if the equilibrium P} = (’%, %7 y{) is stable, which indicates that the shrimp populations and the fish
populations are persistent; If the concentration of the cadmium is small enough, thus we think of the point P3 as the ideal state of
management.

In the following section, variable structure controller u = (u;,u, )" is designed to make the system stable at equilibrium P3.
4. Controller design

Consider the simplified model corresponding to the management model Eq. (2.9)

Xy = PygX1 X2 — flpgXa — P3fxay — ui, (4.1)

X| =X — [y X1X2 — fh0x1Y,
0=y+axy+pry—d—yu.
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The corresponding matrix form is
Ex = A(x) +B(x)u,
where

X x| — U X1X2 — 0Ky
L=1x ], A(XT) = | HpX1x2 — popXo — p3fxay |,
y+axy+ pry—d

100 0 0
E=(0 1 0], By)=(-1 0], u:(“l),
00 0 0 -y =

Before the controller is designed, the model Eq. (4.1) should be normalized.

4.1. Normalization of the model
Take
u= 7K2(X)X + U*s

where u* = (1, u;)" is a new control input of the model.
Choose

00 0
Ky (x) = (0 0 _l)
y
such that
det(E + BK,(x)) # 0.

thus, the normalized model corresponding to the model Eq. (4.1) is

Xy = IX| — [y XX — Jl,0X1Y,
. N
Xp = PygX1 X2 — flogXa — P3fxay — uy,

Yy =y+axyy + pxy —d — yu.

For the model Eq. (4.4), letX; =x; — X}, X2 =X — x5, ¥y =y —¥*, the following is got

X1=r(® +x]) -y (® X)) (7% +%) —pa(® +x)) T+,
X = Hio ()_‘l +xT) ()_‘2 +x;) _.“20(22 +x§) - ﬂ3/”(j2 +x;) G+y) —u,
F=0+y)+a®@ +x)F+Y) +AE+x)F+y) —d— F+Y)u.

The corresponding matrix form is

X =AF) + B,

where
0 0
x = %Ry, B@)=| -1 0 :
0 —-G+y)

r(®@ + ) = (B +x0) (B +x3) — ma(® +x7) 5+ )
Alx) = .‘410(}1 +XT) (}2 +x;) *ﬂzo(EZ +x’2‘) */43/}(}2 +x;)(')7+y*)
G+y)+a@+x)0+y)+ B +x)5+y) —d

[
>

As(%)

According to the literature [28], the following is got

Journal of the Franklin Institute xxx (xxxx) Xxx

(4.2)

(4.3)

“4.4)

(4.5)

(4.6)
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R(p) = (B1.BL(0).B: ).

where by, b, are the first, the second column of the matrix B(¥), respectively, and
By (1) = VA(Z)b: — VBiAD),

where V = (L e i).

0x, 7 0x2” dy
That is
0 p (%1 +x7) 0
R(X) =] -1 *(l‘]o(jl +XT) =P +y") —P‘zo) 0
0 —po+y7) -G+y)

where X; + x; =x1 #0.
Remark 4.1. x; = 0 means the shrimp populations are about to extinct, x; # 0 is the purpose of management.

Obviously, R(¥) is full rank, whose singular inverse matrix is

tio (1 +X7) — B3+ ) — g

-1 0
O +y)
1
—\-1
__ o L
p (1 +x7) G+y)

Let

the primitive functions of [R(%)];" and [R(%)];" are

1 i ]
L +a) 6 = / R, d%,
1

B [
7;m@l+m)—m@+y>+tf—/humhdx

Take
nmz/mmwm
Ty(%) = [R5 'A®X), (4.7)
nm:/mmyw

Let

1 - * *
’u—]ln(xl +x)+¢]

Ti(x) ’
T(x) = (B(x)) =| " (%2 +x3,) —%(iﬂ*) ‘ (4.8)
T:(X) ! !

—ﬂﬁln()_c] +x7) —In(y+y) + ¢
1

According to the literature [28], choose the transformation matrix T(¥) and denote X; = T1(¥), X2 = To(¥), ¥ = Ts(X), X =
(X1,%2,¥)", the following theorem is obtained.

Theorem 4.1. For the model Eq. (4.6), the state transformation y—7% : ¥ = T(x) :
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Lom oy
ZIH(XI +x}) +c

X Ti(%) r .
%= (“) i (Tzw) -| e L) -
y T3(X) : l

3
—l—ln(fcl +x) —InF+y)+c;

) 0 1 0\ /% 0 0 ”za_o ”
=100 0%+ me|+]|! ) (‘) (4.10)
y 00 0/\y 1 (X) : "2
0 1
where
= Ly =) (2 W Sy
(X)) = —A(X) " 30, m(X) G 1(X) G5 3(X)-

Proof. Differentiate the formula Eq. (4.9), the following is given
% 7\(%) V@A@Y (VX )B(X)
% | =| 0@ |=|VR@A® |+ | VR)B@) |u. (4.11)
T5(x XAX) VT (x")B(X")
where

VTi(OA(X') = u (%2 +23) — ;:l G+y), VLEA®M) = ~A(0) - %33(7),

1 1 1

VI @B = (0.0), VL@BE) = (1,’%<y+y*>), VI, @B = (0.1).

Obviously, VT; (%)A(%) = To(¥X) = Xo.
Let

mG) = A (%) — ”ﬂ—“z ),
p

000 = 0

1
y+y)

Thus, the controllability canonical form of the model Eq. (2.3) is

R N o 0 0
()-GE96)- G- o))
5 5 (%) ‘ 1

0 1
[0 Based on the above, the controller is designed in the following section.

As(X)-

010
000
00 0

4.2. Controller design
According to the theory of variable structure control, controller is designed not only to make the shrimp populations and the fish
populations persist, but also to reduce the concentration of cadmium in the recommended limits for human consumption as soon as

possible. The specific steps are as follows:

e Step 1 Choice of switching function
(1) The model Eq. (4.10) is decomposed into the following models

10
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@) N (g é) (%> * (m?@) + <(1) ”ﬂ(yoﬂ*)) (2) (4.12)
Y =5 +m) +u. (4.13)

(2) Take the switching function
s@) = (510, 2@) =(F+%, 3) (4.14)

where c is a constant.
e Step 2 Design of controller
Let s1()) =0, s2(%) = 0 and combine s; () = 0 with the model Eq. (4.10), the following is got

X
X, = —ce @, (4.15)
y

If ¢ > 0, then tlun(fl ,X2,¥) = (0,0,0), that is, the sliding mode s(%) = 0 of the model Eq. (4.10) is asymptotically stable at the point
(0,0,0).
Differentiate s; (%) along the model Eq. (4.11), the following is got

< PSS = > * Ao ey
$1(X) = X + % = X+, (X) + 4 +’%(y+y Jua, (4.16)

1

Differentiate s,()) along the model Eq. (4.12), the following is got

$(7) =5 = m(0) + - (4.17)
Take the exponential approach laws

§1(X) = —ersgnsi (X) — kisi (X), (4.18)

$2() = —easgns2(X) — kes2(X), (4.19)

where ¢, €3, ki, ko are positive.

It is easy to prove that s1(3)s1(¥) < 0 and s2(3)s2(%) < 0, thus s()) = 0 is global stable.

According to the literature [28], combine the formula Eq. (4.15) with the formula Eq. (4.17); And combine the formula Eq. (4.16)
with the formula Eq. (4.18), respectively, the controller u* = (uj,u; )T of the model Eq. (4.10) is taken as

uy = —esgnsi(X) —kisi(X) — X2 —n,(X)
4.20
— ”;l G+ y)( = esgns: () — kasa(X) — 1, (X)) ( )
1
w, = —&3g08, (%) — kas2 (%) — 1, (X)- @20

Remark 4.2. In Step 2, because s(y) = O is global stable, take the sliding mode as the switching surface. It is worth noting that they
may be different.

According to the steps above, the main theorems of the paper are obtained.

Theorem 4.2. For the model Eq. (4.10), the control

.

u = h
.

o,

—ersgnsi (%) — kisi (%) — X2 — i ( (7 +5)( = e2sgnsr(X) — kas2(X) — (X))

_ a

¥z
1

—&x5gnsy (X)) — kas2(X) — 1,(X)-

makes the trajectories of the model reach the switching surface s() = 0 in finite time

11
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. 1 €1 +k1|5‘10‘ 1 &y +k2‘520|
" =max|—In ,—In .
ki €] ka &

where €1, €3,k , ko are parameters.

Proof. For the model Eq. (4.11), the following two cases are discussed
case 1s;(%) >0
If 51 (%) > O, then

$1(0) = —&1 — kisi (%)

The corresponding solution is

_ e\ _ €
si(X) = (ﬁo‘*’ﬁ)e kin _ﬁv

where sy is the initial value of s; ().
Let s1(%) = 0, the followings are got

_ 1 k
n=1%= *111(8]7_'_ 1510>7 51(0) = —e

€1

case 2 51(}) <0
If 51 (%) < O, then

$1(0) = €1 — kisi (%)-

The corresponding solution is

_ &\ _un €
si(X) = (510*1711)6 kit +k*]1~
Let s;()) = 0, the followings are got

s 1 €1 + kis o
=1 :k_]]n<%)7 Sl(X):*fl

In short, the trajectories of the model Eq. (4.10) may reach the surface s; (%) = 0 in finite time ¢ = max{t,,t, } = %ln <w),

€1
where sy is the initial value of s; (%).

Similarly, the trajectories of the model Eq. (4.10) may reach the surface sy(%) = 0 in finite time t; = kli In (%ﬁ‘”‘”) , where sy is the
initial value of s ().

Let t* = max{t],t;} = max (% In (M),k%ln (%i‘m‘)), thus the trajectories of the model Eq. (4.10) may reach the switching

1

surface s(3) = 0 in finite time t*.[]

Remark 4.3. If ¢, €3 are reduced, then the trajectories of the model Eq. (4.10) enters into the switching surface s(j) = 0 as soon as
possible; If ky, ko are increased, the corresponding vibration is weaken.

Further, the following theorem is obtained.

Theorem 4.3. For the model Eq. (4.10), if the conditions in Theorem 4.2 are satisfied, then the model is asymptotically stable at the point
(0,0,0).

According to the control Eq. (4.3), the variable structure controller u = (u;,u,) of the model Eq. (4.1) is obtained

u = ( _ — ~ — o * a2 L2 v
—ersgnsi (X) — kisi () — cx2 —n, (%) — 7(}’ +¥)( — easgnsy (X) — kas2(X) — 1m(X))
5 = exsgnsy(@) ~ kasa () — (D).

Thus, the following is got:

Theorem 4.4. For the model Eq. (4.1), the variable structure control

12
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Table 5.1
The values of coefficients.
r M1 Hio H2o d a p Ha H3 ¢ 13} ka €1 )
0.66 0.3 0.25 0.1 0.5 150 300 0.0001 0.0015 1 0.3 0.1 0.2 0.1
T T T T T T T
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Fig. 4.1. Time response of the model Eq. (3.1) at the equilibrium Pj.

—ersgnsi (%) — kisi (%) — %2 — 0, (%) — ’% 5+ 3)( — easgnss (%) — ks () — 1, (%))

1

1. _ _ _
5 exsgnsz (X) — kas2(X) — 1, (X)-

makes the trajectory of the model reach the switching surface s()) = 0 in finite time

_ 1 1 + kilsiol & + ky s
t=max|—In l ,
kl &1 kz &

and the model with small y* stable at equilibrium P;. Where &1 > 0,e2 > 0,k; > 0,k > 0,c >0, In the next section, the further dis-
cussions are given.

5. Discussions

Take coefficients of the model Eq. (3.1) and the model Eq. (4.1) as follows (See Table 5.1).

By MATLAB Software, the time responses of the model Eq. (3.1) and the model Eq. (4.1) at the equilibrium P} are got.

Theorem 3.4 shows that the existence of the cadmium in the environment leads to the extinction of fish populations as time goes by
(See Fig. 4.1). On the other hand, it shows that the cadmium in the environment has more effect on the fish populations than the shrimp
populations if the cadmium increases abruptly. In order to avoid the phenomenon, the controller is designed by regulating the cad-
mium in the body of fish populations and in the environment (See Theorem 4.2).

The result (In Theorem 4.2) shows that the model Eq. (4.1) with control is stable at the equilibrium P}, which means that the shrimp
populations and the fish populations stabilize in the ideal state as quickly as possible and the concentration of the cadmium in the
environment reduces to the environmental quality standard as soon as possible (See Fig. 4.2).

In short, the study in the paper shows the following two highlights: One is that the fast-slow process such as a one-off discharge and
bioconcentration on tissues and organs of toxic substances is described by a singular predator-prey model; the other is that the variable

13
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Fig. 4.2. Time response of the model Eq. (4.1) at the equilibrium Pj.

structure control is used to make the system in the ideal state as quickly as possible and cut the cost of control. However, whether a one-
off discharge of toxic substances leads to the catastrophe of the system and whether the variable structure control is used to control the
catastrophe, which is our work in the future.
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