
Acta Mathematicae Applicatae Sinica, English Series

https://doi.org/10.1007/s10255-026-0008-2
http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,

English Series

© The Editorial Office of  AMAS & 
     Springer-Verlag GmbH Germany 2026

Stationary Distribution of a Stochastic Hybrid Model

with Fear: a Markov Semigroup Theory

Hao-kun QI1,2, Bing LIU1,2,†, Shi LI1

1School of Mathematics, Anshan Normal University, Anshan 114007, China
2Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of

Chemistry and Life Science, Anshan Normal University, Anshan 114007, China

(†E-mail: liubing529@126.com)

Abstract In this paper, we investigate the stationary distribution of a novel stochastic hybrid predator-prey

model with fear effect and Beddington-DeAngelis functional response. Based on Markov semigroup theory, the

existence of asymptotically stable stationary distribution of stochastic hybrid system is established, which can

converge in L1 to an invariant density under appropriate conditions. Moreover, we derive sufficient conditions
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Keywords stochastic hybrid model; fear effect; Markov semigroup; stationary distribution; extinction and

persistence

2020 MR Subject Classification 92D25; 60H10; 60J10

1 Introduction

Recently, the stochastic population models affected by fear effect have become a hot issue being
researched. Fear is the inherent psychological reaction of biological organisms, which can help
organisms to improve their alertness and response capability, thereby avoiding danger, like
the fear of prey population being hunted by predator population, but it also affects foraging
behavior[2], reproductive ability and strategy[7], habitat utilization[8], and the birth rate and
survival rate of offspring[28]. In 2021, Qi and Meng[19] purposed a stochastic predator-prey
system with fear effect, and the threshold for the existence of a unique ergodic stationary
distribution is established. Liu et al.[16] also considered the effect of fear on the predator-prey
model and obtained the existence of ergodic stationary distribution. They both studied the
existence and stability of stationary distribution, which is a key issue worthy of attention for
the study of stochastic differential dynamic models. Similarly, in [16, 20, 21], they also employed
the traditional method of stochastic analysis and Khasminskĭi ergodicity theory[11, 17] to analyze
the existence of ergodic stationary distribution. But this method has certain limitations, that
is, degradation diffusion cannot be handled well. Therefore, to deal with these limitations,
Rudnicki et al.[25] utilized the Markov semigroup theory to discuss the stationary distribution
of some stochastic predator-prey models[14, 23, 24] and stochastic epidemic models[6, 12, 15]. For
example, Lin and Jiang[14] considered a stochastic predator-prey model with modified Leslie-
Gower and Holling-type II schemes, they gave a sufficient condition for the existence of a
stationary distribution.
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However, in [4, 6, 9, 10, 14, 16, 19–21, 23, 24, 29], they only considered the impact of
white noise on the predator-prey models or stochastic epidemic models. As far as we know,
the predator-prey models or epidemic models can also be affected by the color noise, which
is described by continuous time Markov chain in mathematics[12, 15, 27]. For example, in [15],
Lin et al. considered a regime-switching SIRS epidemic model with degenerate diffusion, they
found that the densities of the distributions of the solution can converge in L1 to an invariant
density under certain conditions. Lan et al.[12] considered a stochastic SIRS epidemic model
with non-monotone incidence rate under regime-switching, they also found that the densities
of the distributions of the solution can converge in L1 to an invariant density by using the
Markov semigroups theory. They both only considered the use of Markov semigroup theory to
analyze the characteristics of epidemic models with regime-switching but neglected to study the
dynamic properties of stochastic population models with regime-switching. Hence, we propose
a novel stochastic hybrid predator-prey model with fear effect as follows

dx(t) = x
[
r(ξ(t))

(
η(ξ(t)) +

α(ξ(t))(1− η(ξ(t)))

α(ξ(t)) + y

)
− µ(ξ(t))− γ(ξ(t))x

− β(ξ(t))y

1 + a(ξ(t))x+ b(ξ(t))y

]
dt+ σ(ξ(t))x dB(t),

dy(t) = y
[ θ(ξ(t))β(ξ(t))x

1 + a(ξ(t))x+ b(ξ(t))y
− d(ξ(t))− δ(ξ(t))y

]
dt+ σ(ξ(t))y dB(t),

(1.1)

where x and y denote the density of prey and predator population, respectively. r denotes
the birth rate of prey, η represents the cost of minimum fear and η ∈ [0, 1], α stands for the
level of fear with prey population, γ and δ represent the intra-species competition of prey and
predatory, respectively. µ, d, β, θ represent the prey death rate, the predator death rate, the
predation rate, the conversion rate, respectively. x

1+ax+by stands for the Beddington-DeAngelis

functional response. All parameter values of model (1.1) are positive constants for any k ∈ M ,
{1, 2, · · · , N}. B(t) is a standard Brownian motion denoted on a complete probability space
(Ω,F , {Ft}t≥0,P) with a σ-field filtration {Ft}t≥0 satisfying the usual conditions and σ > 0
stands for the intensities of the white noise. ξ(t) is a continuous time Markov chain with values
in finite state space M.

For any vector g = (g(1), g(2), · · · , g(N)), we let ĝ = mink∈M{g(k)} and ǧ = maxk∈M{g(k)}.
Suppose the generator Γ = (γkl)N×N of the Markov chain is given by

P(ξ(t+∆) = l|ξ(t) = k) =

{
γkl∆+ o(∆), if k ̸= l,

1 + γkl∆+ o(∆), if k = l,

where ∆ > 0, γkl ≥ 0 is the transition rate from k to l if k ̸= l while
∑N

l=1 γkl = 0. In this
paper, we assume Markov chain ξ(t) is irreducible and independent of Brownian motion and
assume γkl ≥ 0, for any k ̸= l. Assume further that Markov chain ξ(t) is irreducible and has
a unique stationary distribution π = {π1, π2, · · · , πN} which can be determined by equation

πΓ = 0 subject to
∑N

k=1 πk = 1, and πk > 0, ∀ k ∈ M.
Let u = lnx, v = ln y. Then, by Itô’s formula, the random variables u, v satisfy

du(t) =
[
h1(k) +

r(k)α(k)(1− η(k))

α(k) + ev
− γ(k)eu − β(k)ev

1 + a(k)eu + b(k)ev

]
dt

+σ(k) dB(t),

dv(t) =
[ θ(k)β(k)eu

1 + a(k)eu + b(k)ev
− h2(k)− δ(k)ev

]
dt+ σ(k) dB(t),

(1.2)

where h1(k) = r(k)η(k)− µ(k)− σ2(k)
2 , h2(k) = d(k) + σ2(k)

2 .
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Obviously, the model (1.1) is equivalent to the model (1.2), then in this paper, some defi-
nitions and results of Markov semigroup, and some useful Lemma are listed in Section 2. We
investigate the existence and stability of stationary distribution of model (1.2) by using Markov
semigroup theory, which is proved in Section 3. Section 4 gives the extinction and persistence
of the stochastic hybrid model (1.1).

2 Preliminary

In this section, we provide some auxiliary definitions and results about Markov semigroup (see
[11, 16, 19]).

Let R+ = [0,+∞), Rn
+ = {(x1, · · · , xn) ∈ Rn : xn > 0, 1 ≤ i ≤ n}. Let X = R2

+, Σ = B
be the σ-algebra of Borel subset of X and m be the Lebesgue measure on (X,Σ). Let the triple
(X,Σ,m) be a σ-finite measure space. Denote D be the subset of the space L1 = L1(X,Σ,m)
which contains all densities, i.e.

D = {f ∈ L1 : f ≥ 0, ||f || = 1}.

A linear mapping P : L1 → L1 is called a Markov operator if P(D) ⊂ D.
The Markov operator P is called an integral or kernel operator if there exists a measurable

function K : X× X → [0,∞) such that

Pf(x) =

∫
X
K(x, y)f(y)m( dy)

for every density f . One can check that from the condition P(D) ⊂ D it follows that∫
X
K(x, y)m(dx) = 1

for all y ∈ X.
A family {P(t)}t≥0 of Markov operators which satisfies conditions:

(a) P(0) = Id, (Id denotes identity matrix);

(b) P(t+ s) = P(t)P(s) for s, t ≥ 0;

(c) The function t → P(t)f is continuous with respect to the L1 norm for each f ∈ L1,

is called a Markov semigroup. A Markov semigroup {P(t)}t≥0 is called partially integral, if
there exists t0 > 0, and a measurable function K : (0,∞) × X × X → [0,∞), called a kernel,
such that ∫∫

K(x, y)m(dx)m( dy) > 0, (2.1)

and

P(t0)f(x) ≥
∫
X
K(x, y)f(y)m( dy), for every f ∈ D. (2.2)

A density f∗ is called invariant if P(t)f∗ = f∗ for each t > 0. The Markov semigroup {P(t)}t≥0

is called asymptotically stable if there is an invariant density f∗ such that

lim
t→∞

||P(t)f − f∗|| = 0, for f ∈ D.
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A Markov semigroup {P(t)}t≥0 is called sweeping with respect to a set A ∈ Σ if for every f ∈ D

lim
t→∞

∫
A

P(t)f(x)m(dx) = 0.

The following lemma summarizes some result concerning asymptotic stability and sweeping.

Lemma 2.1[16, 19]. Let X be a metric space and Σ be the σ-algebra of Borel sets. Let {P(t)}t≥0

be an integral Markov semigroup with a continuous kernel K(t;x; y) for t > 0, which satisfies
(2.1)–(2.2) for all y ∈ X. We assume that for every f ∈ D we have∫ ∞

0

P(t)f dt > 0, a.e.

Then this semigroup is asymptotically stable or is sweeping with respect to compact sets.

The property that a Markov semigroup {P(t)}t≥0 is asymptotically stable or sweeping from
a sufficiently large family of sets is called the Foguel alternative.

3 Asymptotic Stability of Stationary Distribution

In this section, we utilize the Markov semigroup theory to investigate the existence and stability
of stationary distribution of the model (1.2).

Denote E = R2
+ \ U ,

U =
{
(u, v) ∈ R2 : γ(k)eu +

r(k)α(k)(1− η(k))ev

(α(k) + ev)2
+

(1 + θ(k))β(k)ev

(1 + a(k)eu + b(k)ev)2
− δ(k)ev = 0

}
.

Theorem 3.1. Let (u(t), v(t), ξ(t)) be a solution of model (1.2) with any given initial value
(u(0), v(0), ξ(0)) ∈ E×M. Then for every t > 0, the distribution of (u(t), v(t), ξ(t)) has a density

π(t, u, v, k). And if γ̂ > ǎβ̌y∗

1+âx∗+b̂y∗ + ř(1−η̂)
2α̂ , δ̂ > ř(1−η̂)

2α̂ and for k ∈ M, θ(k)h1(k) + h2(k) > 0,

and

N∑
k=1

πkκk < min
{(

γ̂ − ǎβ̌y∗

1 + âx∗ + b̂y∗
− ř(1− η̂)

2α̂

)
x∗2,

(
δ̂ − ř(1− η̂)

2α̂

)
y∗2
}
,

where
N∑

k=1

πkκk = 1
2σ

2(k)x∗+ σ2(k)(1+a(k)x∗)y∗

2θ(k)(1+b(k)y∗) , (x∗, y∗) is the positive equilibrium of model (1.1)

without noise interference, then there exists a unique density π∗(t, u, v, k) such that

lim
t→∞

N∑
k=1

∫∫
R2

+

|π(t, u, v, k)− π∗(t, u, v, k)| du dv = 0,

that is, the semigroup {P(t)}t≥0 is asymptotically stable.

Proof. The proof strategy for Theorem 3.1 can be shown in four steps:
Step 1. Applying the Hörmander Theorem[5], we show that the semigroup is a partially

integral Markov semigroup, which corresponds to the following Lemma 3.2.

Lemma 3.2. The semigroup {Tk(t)}t≥0 is an integral Markov semigroup.
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Proof. Let a(x) and b(x) are vector fields on Rd, then the Lie bracket [a,b] is a vector field
given by

[a,b]j(x) =
d∑

k=1

(
ak

∂bj

∂xk
(x)− bk

∂aj
∂xk

(x)
)
, j = 1, 2, · · · , d.

Let

a1(u, v) =

(
h1(k) +

r(k)α(k)(1− η(k))

α(k) + ev
− γ(k)eu − β(k)ev

1 + a(k)eu + b(k)ev

θ(k)β(k)eu

1 + a(k)eu + b(k)ev
− h2(k)

)
,

a2(u, v) =

(
σ(k)

σ(k)

)
.

Then

[a1,a2] =

(
γ(k)σ(k)eu +

r(k)α(k)σ(k)(1− η(k))ev

(α(k) + ev)2
+

β(k)σ(k)ev

(1 + a(k)eu + b(k)ev)2

− θ(k)β(k)σ(k)ev

(1 + a(k)eu + b(k)ev)2
+ σ(k)δ(k)ev

)
.

Consequently,∣∣a2 [a1,a2]
∣∣

=
(
− γ(k)eu − r(k)α(k)(1− η(k))ev

(α(k) + ev)2
− (1 + θ(k))β(k)ev

(1 + a(k)eu + b(k)ev)2
+ δ(k)ev

)
σ2(k) ̸= 0,

which implies that a2(u, v), [a1,a2](u, v) are linearly independent. Hence, for every (u, v) ∈ E,
vectors a2(u, v), [a1,a2](u, v) span the space E. In view of Hörmander Theorem[5], there exists a
smooth density K(t, u, v;u0, v0) ∈ C∞ ((0,∞)× E× E) such that for every f ∈ L1(E,B(E),m)
satisfying f ≥ 0 and ||f || = 1,

Tk(t)f(ξ, ζ) =
∫∫

E
K(t, u, v; ξ, ζ)f(ξ, ζ) dξ dζ.

Then, the semigroup {Tk(t)}t≥0 is an integral Markov semigroup.

Step 2. We prove that the density of the transition function is positive on R2
+ via using

support theorems[1, 3, 26], which corresponds to Lemma 3.3.

Lemma 3.3. If θ(k)h1(k) + h2(k) > 0, k ∈ M, then for any f ∈ U,∫ ∞

0

Tk(t)fdt > 0, a.e. on E,

where U = {f ∈ L1(E,B(E),m) : f ≥ 0, ||f || = 1}.

Proof. The Itô’s SDEs in model (1.2) can be rewritten in the Stratonovitch’s form{
dut =f1(ut, vt, ξ(t)) dt+ σ(k) ◦ dBt,

dvt =f2(ut, vt, ξ(t)) dt+ σ(k) ◦ dBt,
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where 
f1(u, v, k) =h1(k) +

r(k)α(k)(1− η(k))

α(k) + ev
− γ(k)eu − β(k)ev

1 + a(k)eu + b(k)ev
,

f2(u, v, k) =
θ(k)β(k)eu

1 + a(k)eu + b(k)ev
− h2(k)− δ(k)ev.

(3.1)

Fix a point (u0, v0) ∈ E and a smooth control function ϕ ∈ L2([0, T ];R), consider the following
control system of integral equations


uϕ(t) =u0 +

∫ t

0

(f1(uϕ(s), vϕ(s)) + σ(k)ϕ) ds,

vϕ(t) =v0 +

∫ t

0

(f2(uϕ(s), vϕ(s)) + σ(k)ϕ) ds.

(3.2)

Denote Du0,v0;ϕ be the Frechét derivative of the function f 7→ xϕ+f(T ) from L2([0, T ];R) to
R2

+, where xϕ+f = (uϕ+f, vϕ+f)
T . If for some ϕ ∈ L2([0, T ];R), the derivative Du0,v0;ϕ has rank

2, then K(T, u, v;u0, v0) > 0 for (u, v) = (uϕ(T ), vϕ(T )).

For 0 ≤ t0 ≤ t ≤ T , let J (t, t0) be a matrix function such that J (t0, t0) = Id, ∂J (t,t0)
∂t =

Ψ(t)J (t, t0), where Ψ = f ′(uϕ, vϕ), f
′ is the Jacobians of f = (f1(u, v), f2(u, v))

T
, and here

f1(u, v, k) and f2(u, v, k) are defined in equation (3.1). Then

Du0,v0;ϕf =

∫ T

0

J (T, s)g(s)f(s) ds,

where g = (σ(k), σ(k))
T
.

Since we consider a continuous control function ϕ, the model (3.2) can be replaced by the
following system of differential equations

u′
ϕ =h1(k) +

r(k)α(k)(1− η(k))

α(k) + ev
− γ(k)eu − β(k)ev

1 + a(k)eu + b(k)ev
+ σ(k)ϕ,

v′ϕ =
θ(k)β(k)eu

1 + a(k)eu + b(k)ev
− h2(k)− δ(k)ev + σ(k)ϕ.

(3.3)

First, we claim that the rank of Du0,v0;ϕ is 2. Let ϵ ∈ (0, T ) and f(t) = 1[T−ϵ,T ] for t ∈ [0, T ],
where 1[T−ϵ,T ] is the characteristic function of interval [T−ϵ, T ]. By Taylor expansion, we obtain

J (T, s) = Id + Ψ(T )(T − s) + o((T − s)).

Then

Du0,v0;ϕf = ϵg +
ϵ2

2
Ψ(T )g + o(ϵ2).

By calculating, we get

Ψ(T )g =

( −γ(k)eu +
a(k)β(k)euev

(1 + a(k)eu + b(k)ev)2
−r(k)α(k)(1− η(k))ev

(α(k) + ev)2
− β(k)(1 + a(k)eu)ev

(1 + a(k)eu + b(k)ev)2

θ(k)β(k)eu(1 + b(k)ev)

(1 + a(k)eu + b(k)ev)2
− θ(k)β(k)b(k)euev

(1 + a(k)eu + b(k)ev)2
− δ(k)ev

)

·
(

σ(k)

σ(k)

)
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=

( −γ(k)σ(k)eu − r(k)α(k)σ(k)(1− η(k))ev

(α(k) + ev)2
− β(k)σ(k)ev

(1 + a(k)eu + b(k)ev)2

θ(k)β(k)σ(k)ev

(1 + a(k)eu + b(k)ev)2
− σ(k)δ(k)ev

)
.

Since |g Ψ(T )g| ̸= 0, we get that g and Ψ(T )g are linearly independent, which imply that
the derivative Du0,v0;ϕ is rank 2.

Second, we prove that for any two points (u0, v0) ∈ E and (u1, v1) ∈ E, there exist a control
function ϕ and T > 0 such that (uϕ(0), vϕ(0)) = (u0, v0) and (uϕ(T ), vϕ(T )) = (u, v).

Let wϕ = vϕ − θuϕ, model (3.3) becomes{
u′
ϕ(t) =h1(uϕ(t), wϕ(t)) + σ(k)ϕ,

w′
ϕ(t) =h2(uϕ(t), wϕ(t)),

(3.4)

where

h1(uϕ(t), wϕ(t)) =h1(k) +
r(k)α(k)(1− η(k))

α(k) + ewϕ(t)eθ(k)uϕ(t)
− γ(k)euϕ(t)

− β(k)ewϕ(t)eθ(k)uϕ(t)

1 + a(k)euϕ(t) + b(k)ewϕ(t)eθ(k)uϕ(t)
,

h2(uϕ(t), wϕ(t)) =− θ(k)h1(k)− h2(k)−
θ(k)r(k)α(k)(1− η(k))

α(k) + ewϕ(t)eθ(k)uϕ(t)
+ θ(k)γ(k)euϕ(t)

− δ(k)ewϕ(t)eθ(k)uϕ(t) +
θ(k)β(k)(ewϕ(t)eθ(k)uϕ(t) + euϕ(t))

1 + a(k)euϕ(t) + b(k)ewϕ(t)eθ(k)uϕ(t)
.

Now we prove for any (u0, w0) ∈ E and (u1, w1) ∈ E, there exist a control function ϕ and
T > 0 such that (uϕ(0), wϕ(0)) = (u0, w0) and (uϕ(T ), wϕ(T )) = (u1, w1).

We construct the control function ϕ later. First, we find a positive constant T and a differen-
tiable function wϕ : [0, T ] → E, such that wϕ(0) = w0, wϕ(T ) = w1, w

′
ϕ(0) = h2(u0, w0) = wd

0 ,

w′
ϕ(T ) = h2(u1, w1) = wd

T and

w′
ϕ(t) + θ(k)h1(k) + h2(k) > 0, for t ∈ [0, T ]. (3.5)

Second, dividing the structure of the function wϕ on three intervals [0, ϵ], [ϵ, T − ϵ] and
[T − ϵ, T ], where 0 < ϵ < T

2 .
It follows that we can construct a C2-function wϕ : [0, ϵ] → E such that

wϕ(0) = w0, w′
ϕ(0) = wd

0 , w′
ϕ(ϵ) = 0

and wϕ satisfies (3.5) for t ∈ [0, ϵ]. Analogously, we construct a C2-function wϕ : [T − ϵ, T ] → E
such that

wϕ(T ) = w1, w′
ϕ(T ) = wd

T , w′
ϕ(T − ϵ) = 0

and wϕ satisfies (3.5) for t ∈ [T − ϵ, T ].
Taking T sufficiently large, we can extend the function

wϕ : [0, ϵ] ∩ [T − ϵ, T ] → E

to a C2-function wϕ defined on the whole interval [0, T ] such that the function zϕ satisfies (3.5)
on [0, T ]. It follows that we can find a C1-function xϕ which satisfies the second equation of
(3.4) and finally we can determine a continuous function ϕ from the first equation of (3.4).
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Hence, we can prove that for any two points (u0, v0) ∈ E and (u1, v1) ∈ E, there exist a
control function ϕ and T > 0 such that (uϕ(0), vϕ(0)) = (u0, v0) and (uϕ(T ), vϕ(T )) = (u, v).

Finally, based on the support theorems (see [1, 3, 26]), we obtain the positivity of K, which
implies that

∫∞
0

Tk(t)fdt > 0, a.e. on E.

According to Lemma 3.2 and the Section 5 in [22] for any t > 0 the distribution of the
process (u(t), v(t), ξ(t)) is absolutely continuous, then its density ρ = (ρ1, ρ2, · · · , ρN )T satisfies
the master equation

∂ρ

∂t
= Γ′ρ+ Lρ, (3.6)

where Lρ = (L1ρ1,L2ρ2, · · · ,LNρN )T .
Let λ be a constant such that λ > max1≤k≤N{−γkk} and Q = λ−1Γ′ + I. Then equation

(3.6) becomes

∂ρ

∂t
= λQρ− λρ+ Lρ. (3.7)

Now, let Y = X ×M, G be the σ-algebra of Borel subsets of Y, and let m̃ be the product
measure on (Y, G) given by m̃(B × {k}) = mB for each B ∈ Σ and k ∈ M. Obviously, Lρ
generates a continuous Markov semigroup {T (t)}t≥0 on the space L1(Y, G, m̃), given by the
formula

T (t)g = (T1(t)g, T2(t)g, · · · , TN (t)g), g(u, v, k) ∈ L1(Y, G, m̃).

It is obvious that the space L1(E×M) and L1(E)×· · ·×L1(E) can be identified and therefore
the semigroup T (t) is well-defined duo to M is a finite set.

From the Philips perturbation theorem[13], equation (3.7) with the initial condition ρ(0, u, k) =
f(u, k) generates a Markov semigroup {P(t)}t≥0 on the space L1(Y) given by

P(t)f = e−λt
∞∑

n=0

λnS(n)(t)f,

where S(0)(t) = T (t) and

S(n+1)(t)f =

∫ t

0

S(0)(t− s)QS(n)(s)f ds, n ≥ 0.

Step 3. Verify that the Markov semigroup satisfies the “Foguel alternative”, that is, the
semigroup {P(t)}t≥0 is asymptotically stable or sweeping with respect to compact sets, which
can be seen in the following Lemma 3.4.

Lemma 3.4. If θ(k)h1(k) + h2(k) > 0, k ∈ M. The semigroup {P(t)}t≥0 is asymptotically
stable or sweeping with respect to compact sets.

Proof. First, according to Lemma 3.3, and using the similar proof to Lemma 2.3 in [15] (or
Lemma 4.4 in [12]), we can prove∫ ∞

0

P(t)f dt > 0, a.e. on Y.

Then, applying the similar arguments to Corollary 1 in [23], we obtain that for every v0 ∈ Y
there exist ϵ > 0, t > 0 and a measurable function χ > 0 such that∫

χdm̃ > 0, K(t, u, v) ≥ χ(u)
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for u ∈ Y and v ∈ B(v0, ϵ), where B(v0, ϵ) is the open ball with center v0 and radius r.
Finally, by virtue of Lemma 2.1, the proof of Lemma 3.4 is proved easily.

Step 4. We prove that semigroup {P(t)}t≥0 is asymptotically stable.
According to Lemma 3.4, the semigroup {P(t)}t≥0 is asymptotically stable or sweeping with

respect to compact sets. In order to prove that semigroup {P(t)}t≥0 is asymptotically stable,
we need to construct a non-negative C2-function V and R > 0 such that

sup
u2+v2>R2

A ∗V (u, v, k) < 0,

where

A ∗V (u, v, k) =
σ2(k)

2

(∂2V

∂u2
+ 2

∂2V

∂u∂v
+

∂2V

∂v2

)
− f1(u, v, k)

∂V

∂u
− f2(u, v, k)

∂V

∂v

+
∑

k ̸=l,k,l∈M

γkl(V (u, v, l)− V (u, v, k)),

where f1(u, v, k) and f2(u, v, k) are defined in equation (3.1).
Since the matrix Γ is irreducible, there exists a solution ϖ = (ϖ1, ϖ2, · · · , ϖN ) of the

Poisson system such that

Γϖ + κ̃ =
N∑

k=1

πkκk1,

where κ̃ = (κ1, κ2, · · · , κN )T and 1 = (1, 1, · · · , 1)T , that is, for any k ∈ M, we have

∑
k ̸=l,k,l∈M

γkl(ϖl −ϖk) + κ̃ =
N∑

k=1

πkκk.

Constructing a C2-function V :

V (u, v, k) =
(
eu − x∗ − x∗ ln

eu

x∗

)
+

1 + a(k)x∗

θ(k)(1 + b(k)y∗)

(
ev − y∗ − y∗ ln

ev

y∗

)
+ (ϖk + |ϖ|),

where (x∗, y∗) is the positive equilibrium of model (1.1) without noise interference.
Then, by calculating, we have

A ∗V =(eu − x∗)
(
h1(k) +

r(k)α(k)(1− η(k))

α(k) + ev
− γ(k)eu − β(k)ev

1 + a(k)eu + b(k)ev

)
+

1 + a(k)x∗

θ(k)(1 + b(k)y∗)
(ev − y∗)

( θ(k)β(k)eu

1 + a(k)eu + b(k)ev
− h2(k)− δ(k)ev

)
+

1

2
σ2(k)x∗ +

σ2(k)(1 + a(k)x∗)y∗

2θ(k)(1 + b(k)y∗)
+

∑
k ̸=l,k,l∈M

γkl(ϖl −ϖk)

=− γ(k)(eu − x∗)2 +
a(k)β(k)y∗(eu − x∗)2

(1 + a(k)x∗ + b(k)y∗)(1 + a(k)eu + b(k)ev)

− b(k)β(k)(1 + a(k)x∗)x∗(ev − y∗)2

(1 + b(k)y∗)(1 + a(k)x∗ + b(k)y∗)(1 + a(k)eu + b(k)ev)

+
r(k)α(k)(1− η(k))(eu − x∗)(ev − y∗)

(α(k) + y∗)(α(k) + ev)
+

1

2
σ2(k)x∗
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− δ(k)(ev − y∗)2 +
σ2(k)(1 + a(k)x∗)y∗

2θ(k)(1 + b(k)y∗)
+

∑
k ̸=l,k,l∈M

γkl(ϖl −ϖk)

≤−
(
γ(k)− a(k)β(k)y∗

1 + a(k)x∗ + b(k)y∗
− r(k)(1− η(k))

2α(k)

)
(eu − x∗)2

−
(
δ(k)− r(k)(1− η(k))

2α(k)

)
(ev − y∗)2 +

N∑
k=1

πkκk

≤−
(
γ̂ − ǎβ̌y∗

1 + âx∗ + b̂y∗
− ř(1− η̂)

2α̂

)
(eu − x∗)2

−
(
δ̂ − ř(1− η̂)

2α̂

)
(ev − y∗)2 +

N∑
k=1

πkκk.

Under the conditions

N∑
k=1

πkκk < min
{(

γ̂ − ǎβ̌y∗

1 + âx∗ + b̂y∗
− ř(1− η̂)

2α̂

)
x∗2,

(
δ̂ − ř(1− η̂)

2α̂

)
y∗2
}

for k ∈ M, we can imply that there exist R ∈ R+ large enough such that

sup
u2+v2>R2

A ∗V (u, v, k) ≤ 0.

Hence, by applying similar arguments to those in [18], the existence of a Khasminskĭi function
V implies that the semigroup is not sweeping from the ball {u2 + v2 ≤ R2} ∈ B(E), then,
we obtain that semigroup {P(t)}t≥0 is asymptotically stable. It completes the proof of the
Theorem 3.1

4 Extinction and Persistence

Consider the auxiliary equation{
dX(t) = [(r(k)− µ(k))X(t)− γ(k)X2(t)] dt+ σ(k)X(t) dB1(t),

X(0) = x(0) > 0.
(4.1)

Using a method similar to that in Lemma 2.3 in [4], we can obtain the following Lemma 4.1.
Denote

R1(k) = r(k)− µ(k)− σ2(k)

2
, Rs

1 =

N∑
k=1

πkR1(k).

Lemma 4.1. (i) When Rs
1 < 0, X(t) is extinct, i.e., lim

t→+∞
X(t) = 0 a.s.

(ii) When Rs
1 > 0, X(t) is persistent in the mean and has a unique stationary distribution

ϱ(X, k).

Remark 4.2. Applying the comparison theorem of stochastic differential equation[11] results
in

x(t) ≤ X(t), a.s.
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Denote

R2(k) =

∫ +∞

0

θ(k)β(k)X

1 + a(k)X
ϱ(X, k)d(X, k)−

(
d(k) +

σ2(k)

2

)
,

R̃2(k) = R2(k)−
θ(k)β(k)r(k)(1− η(k))

γ(k)
,

where ϱ(X, k) is defined in Lemma 4.1.

Theorem 4.3. (I) When Rs
1 < 0, prey x(t) is extinct, i.e.,

lim
t→+∞

x(t) = 0, a.s.

(II) When Rs
2 =

∑N
k=1 πkR2(k) < 0, predator y(t) is extinct, i.e.,

lim
t→+∞

y(t) = 0, a.s.

(III) When Rs
1 > 0 and Rs

2 < 0, predator y(t) is extinct and prey x(t) is persistent in the
mean, and has

lim inf
t→+∞

⟨x(t)⟩ ≥ Rs
1

γ̌
> 0, a.s.

(IV) When R̃2

s
=
∑N

k=1 πkR̃2(k) > 0, predator y(t) is persistent in the mean and has

lim inf
t→+∞

⟨y(t)⟩ ≥ âγ̂

b̌θ̌β̌γ̂ + θ̌β̌2â+ δ̌âγ̂
R̃2

s
> 0, a.s.

Proof. We can use the comparison theorem of stochastic differential equation and the results
of Lemma 4.1 to prove (I–IV).

(I) Utilizing Itô’s formula yields

d lnx(t) =
[
r(ξ(t))

(
η(ξ(t)) +

α(ξ(t))(1− η(ξ(t)))

α(ξ(t)) + y(t)

)
− µ(ξ(t))− γ(ξ(t))x(t)

− β(ξ(t))y(t)

1 + a(ξ(t))x(t) + b(ξ(t))y(t)
− σ2(ξ(t))

2

]
dt+ σ(ξ(t)) dB(t)

≤
[
r(ξ(t))− µ(ξ(t))− σ2(ξ(t))

2
− γ(ξ(t))x(t)

]
dt+ σ(ξ(t)) dB(t). (4.2)

Integrating (4.2) from 0 to t and then dividing by t on both sides yields

ln y(t)− ln y(0)

t
≤1

t

∫ t

0

(
r(ξ(s))− µ(ξ(s))− σ2(ξ(s))

2

)
ds+

1

t

∫ t

0

σ(ξ(s)) dB(s). (4.3)

It follows from the ergodic property of ξ(t) that

lim sup
t→+∞

1

t

∫ t

0

R1(ξ(s)) ds =
N∑

k=1

πkR1(k). (4.4)

Taking the limit superior of both sides of (4.3) yields, and then applying the ergodic property
of (4.4), one can calculate that

lim sup
t→+∞

lnx(t)

t
≤

N∑
k=1

πkR1(k) < 0, a.s.,
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which implies

lim
t→+∞

x(t) = 0 a.s.

(II) Utilizing Itô’s formula gets

d ln y(t) =
( θ(ξ(t))β(ξ(t))x(t)

1 + a(ξ(t))x(t) + b(ξ(t))y(t)
− d(ξ(t))− δ(ξ(t))y(t)− σ2(ξ(t))

2

)
dt

+ σ(ξ(t)) dB(t)

=
(θ(ξ(t))β(ξ(t))X(t)

1 + a(ξ(t))X(t)
− θ(ξ(t))β(ξ(t))X(t)

1 + a(ξ(t))X(t)
+

θ(ξ(t))β(ξ(t))x(t)

1 + a(ξ(t))x(t) + b(ξ(t))y(t)

− δ(ξ(t))y(t)− d(ξ(t))− σ2(ξ(t))

2

)
dt+ σ(ξ(t)) dB(t)

=
(θ(ξ(t))β(ξ(t))X(t)

1 + a(ξ(t))X(t)
−

θ(ξ(t))β(ξ(t))
[
b(ξ(t))X(t)y(t) + (X(t)− x(t))

]
(1 + a(ξ(t))X(t))(1 + a(ξ(t))x(t) + b(ξ(t))y(t))

− δ(ξ(t))y(t)− d(ξ(t))− σ2(ξ(t))

2

)
dt+ σ(ξ(t)) dB(t),

then, we have

d ln y(t) ≤
(θ(ξ(t))β(ξ(t))X(t)

1 + a(ξ(t))X(t)
− d(ξ(t))− σ2(ξ(t))

2

)
dt+ σ(ξ(t)) dB(t), (4.5)

and

d ln y(t) ≥
[θ(ξ(t))β(ξ(t))X(t)

1 + a(ξ(t))X(t)
− θ(ξ(t))β(ξ(t))(X(t)− x(t))− d(ξ(t))− σ2(ξ(t))

2

−
(b(ξ(t))θ(ξ(t))β(ξ(t))

a(ξ(t))
+ δ(ξ(t))

)
y(t)

]
dt+ σ(ξ(t)) dB(t). (4.6)

Integrating (4.5) from 0 to t and then dividing by t on both sides yields

ln y(t)− ln y(0)

t
≤1

t

∫ t

0

θ(ξ(s))β(ξ(s))X(s)

1 + a(ξ(s))X(s)
ds− 1

t

∫ t

0

(
d(ξ(s)) +

σ2(ξ(s))

2

)
ds

+
1

t

∫ t

0

σ(ξ(s)) dB(s). (4.7)

By the ergodic theorem, one gets

lim
t→+∞

1

t

∫ t

0

θ(ξ(s))β(ξ(s))X(s)

1 + a(ξ(s))X(s)
ds =

N∑
k=1

∫ ∞

0

θ(k)β(k)X

1 + a(k)X
ϱ(X, k)( dX, k), a.s.

It follows from the ergodic property of ξ(t) that

lim sup
t→+∞

1

t

∫ t

0

R2(ξ(s)) ds =
N∑

k=1

πkR2(k). (4.8)

Taking the limit superior of both sides of (4.7) yields, and then applying the ergodic property
of (4.8), one can calculate that

lim sup
t→+∞

ln y(t)

t
≤

N∑
k=1

πkR2(k) < 0, a.s.,
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which implies

lim
t→+∞

y(t) = 0, a.s.

(III) Utilizing Itô’s formula yields

lnx(t)− lnx(0)

t
=
1

t

∫ t

0

(
r(ξ(s))η(ξ(s))− µ(ξ(s))− σ2(ξ(s))

2

)
ds

+
1

t

∫ t

0

r(ξ(s))α(ξ(s))(1− η(ξ(s)))

α(ξ(s)) + y(s)
ds− 1

t

∫ t

0

γ(ξ(s))x(s) ds

− 1

t

∫ t

0

β(ξ(s))y(s)

1 + a(ξ(s))x(s) + b(ξ(s))y(s)
ds+

1

t

∫ t

0

σ(ξ(s)) dB(s). (4.9)

From the Theorem 4.3(II) and equation (4.9), for any ϵ > 0 there is T > 0, when t > T ,

lnx(t)− lnx(0)

t
≥1

t

∫ t

0

(
r(ξ(s))η(ξ(s))− µ(ξ(s))− σ2(ξ(s))

2

)
ds

+
1

t

∫ t

0

r(ξ(s))α(ξ(s))(1− η(ξ(s)))

α(ξ(s)) + ϵ
ds− 1

t

∫ t

0

γ(ξ(s))x(s) ds

− 1

t

∫ t

0

β(ξ(s))ϵ ds+
1

t

∫ t

0

σ(ξ(s)) dB(s).

Since ϵ is small enough, we have

1

t

∫ t

0

(
r(ξ(s))η(ξ(s))− µ(ξ(s))− σ2(ξ(s))

2

)
ds

+
1

t

∫ t

0

r(ξ(s))α(ξ(s))[1− η(ξ(s))]

α(ξ(s)) + ϵ
ds− 1

t

∫ t

0

β(ξ(s))ϵ ds > 0.

Thus

lim inf
t→+∞

⟨x(t)⟩ ≥ 1

γ̌

N∑
k=1

πkR1(k) =
Rs

1

γ̌
> 0, a.s.

(IV) Applying Itô’s formula to model (4.1), we obtain

lnX(t)− lnX(0)

t
=
1

t

∫ t

0

(
r(ξ(s))− µ(ξ(s))− σ2(ξ(s))

2

)
ds

− 1

t

∫ t

0

γ(ξ(s))X(s) ds+
1

t

∫ t

0

σ(ξ(s)) dB(s),

and from equation (4.9)

lnx(t)− lnx(0)

t
≥1

t

∫ t

0

(
r(ξ(s))η(ξ(s))− µ(ξ(s))− σ2(ξ(s))

2

)
ds− 1

t

∫ t

0

γ(ξ(s))x(s) ds

− 1

t

∫ t

0

β(ξ(s))y(s) ds+
1

t

∫ t

0

σ(ξ(s)) dB(s).

Then, one can derive that

1

t

∫ t

0

γ(ξ(s))(x(s)−X(s)) ds
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≥− 1

t

∫ t

0

β(ξ(s))y(s) ds− 1

t

∫ t

0

r(ξ(s))(1− η(ξ(s))) ds− lnX(t)− lnx(t)

t
. (4.10)

Then substituting (4.10) into (4.6) and combining Lemma 4.1, we have

ln y(t)

t
≥1

t

∫ t

0

θ(ξ(s))β(ξ(s))X(s)

1 + a(ξ(s))X(s)
ds− b̌θ̌β̌γ̂ + θ̌β̌2â+ δ̌âγ̂

âγ̂t

∫ t

0

y(s) ds

− 1

t

∫ t

0

(
d(ξ(s)) +

σ2(ξ(s))

2
− θ(ξ(s))β(ξ(s))r(ξ(s))(1− η(ξ(s)))

γ(ξ(s))

)
ds

+
1

t

∫ t

0

σ(ξ(s)) dB(s) +
ln y(0)

t
. (4.11)

Taking the limit superior of both sides of (4.11) yields

lim inf
t→+∞

⟨y(t)⟩ ≥ âγ̂

b̌θ̌β̌γ̂ + θ̌β̌2â+ δ̌âγ̂

N∑
k=1

πkR̃2(k) > 0, a.s.

5 Conclusion and Numerical Simulation

In this paper, we use the Markov semigroup theory to investigate the stationary distribution
of a novel stochastic hybrid predator-prey model with fear effect and Beddington-DeAngelis
functional response. We have obtained the existence of asymptotically stable stationary distri-
bution of the stochastic hybrid model, which can converge in L1 to an invariant density under
appropriate conditions in Theorem 3.1. Furthermore, the conditions for extinction and persis-
tence of the stochastic hybrid model are also derived, as shown in Theorem 4.3. Specifically,
it is shown that (i): the prey species will be extinct when Rs

1 < 0, while prey species will be
persistent in the mean when Rs

1 > 0; (ii): the predator species will be extinct when Rs
2 < 0,

while predator species will be persistent in the mean when R̃2

s
> 0.

Let ξ(t) is a right-continuous Markov chain taking values in M = {1, 2} and the generator
Γ of the Markov chain is

Γ =

(
−0.7 0.7

0.3 −0.3

)
.

Then we obtain the unique stationary distribution

π = (π1, π2) = (0.3, 0.7).

We choose the values of the parameters in model (1.1) as follows

r(1) = 0.8, α(1) = 0.8, β(1) = 0.6, a(1) = 0.1, b(1) = 0.15, d(1) = 0.1,

µ(1) = 0.2, η(1) = 0.64, δ(1) = 0.4, γ(1) = 0.5, θ(1) = 0.8, σ(1) = 0.2,

r(2) = 0.75, α(2) = 0.7, β(2) = 0.7, a(2) = 0.2, b(2) = 0.2, d(2) = 0.2,

µ(2) = 0.2, η(2) = 0.82, δ(2) = 0.34, γ(2) = 0.5, θ(2) = 0.76, σ(2) = 0.1.

Note that

(x∗, y∗) = (0.5602, 0.4133), γ̂ = 0.5 >
ǎβ̌y∗

1 + âx∗ + b̂y∗
+

ř(1− η̂)

2α̂
= 0.2575,
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δ̂ = 0.34 >
ř(1− η̂)

2α̂
= 0.2057,

θ(1)h1(1) + h2(1) = 0.3536 > 0, θ(2)h1(2) + h2(2) = 0.4786 > 0,

N∑
k=1

πkκk = 0.0086 < min
{(

γ̂ − ǎβ̌y∗

1 + âx∗ + b̂y∗
− ř(1− η̂)

2α̂

)
x∗2,

(
δ̂ − ř(1− η̂)

2α̂

)
y∗2
}

= min{0.076, 0.0229},

which means that the conditions of Theorem 3.1 are satisfied. Therefore, the model (1.1) has
a stationary distribution and its asymptotically stable (see Fig.5.1).
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Fig. 5.1. (a): the Markovian chain of model (1.1). (b): the sample path of x(t) and y(t).
(c): the smoothing curve of the probability density functions of x(t). (d): the
smoothing curve of the probability density functions of y(t).
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