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Abstract In this paper, we investigate the stationary distribution of a novel stochastic hybrid predator-prey
model with fear effect and Beddington-DeAngelis functional response. Based on Markov semigroup theory, the
existence of asymptotically stable stationary distribution of stochastic hybrid system is established, which can
converge in L' to an invariant density under appropriate conditions. Moreover, we derive sufficient conditions

for extinction and persistence of prey and predator populations in the stochastic hybrid model.
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1 Introduction

Recently, the stochastic population models affected by fear effect have become a hot issue being
researched. Fear is the inherent psychological reaction of biological organisms, which can help
organisms to improve their alertness and response capability, thereby avoiding danger, like
the fear of prey population being hunted by predator population, but it also affects foraging
behavior?!| reproductive ability and strategy!”, habitat utilization!®, and the birth rate and
survival rate of offspring®l. In 2021, Qi and Meng'"” purposed a stochastic predator-prey
system with fear effect, and the threshold for the existence of a unique ergodic stationary
distribution is established. Liu et al.'®! also considered the effect of fear on the predator-prey
model and obtained the existence of ergodic stationary distribution. They both studied the
existence and stability of stationary distribution, which is a key issue worthy of attention for
the study of stochastic differential dynamic models. Similarly, in [16, 20, 21], they also employed
the traditional method of stochastic analysis and Khasminskii ergodicity theory" 7] to analyze
the existence of ergodic stationary distribution. But this method has certain limitations, that
is, degradation diffusion cannot be handled well. Therefore, to deal with these limitations,
Rudnicki et al.l?’! utilized the Markov semigroup theory to discuss the stationary distribution
of some stochastic predator-prey models!'* 23 241 and stochastic epidemic models[® 12 15! For
example, Lin and Jiang['¥ considered a stochastic predator-prey model with modified Leslie-
Gower and Holling-type II schemes, they gave a sufficient condition for the existence of a
stationary distribution.
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However, in [4, 6, 9, 10, 14, 16, 19-21, 23, 24, 29], they only considered the impact of
white noise on the predator-prey models or stochastic epidemic models. As far as we know,
the predator-prey models or epidemic models can also be affected by the color noise, which
is described by continuous time Markov chain in mathematics('? 1% 271, For example, in [15],
Lin et al. considered a regime-switching SIRS epidemic model with degenerate diffusion, they
found that the densities of the distributions of the solution can converge in L' to an invariant
density under certain conditions. Lan et al.l'?! considered a stochastic SIRS epidemic model
with non-monotone incidence rate under regime-switching, they also found that the densities
of the distributions of the solution can converge in L! to an invariant density by using the
Markov semigroups theory. They both only considered the use of Markov semigroup theory to
analyze the characteristics of epidemic models with regime-switching but neglected to study the
dynamic properties of stochastic population models with regime-switching. Hence, we propose
a novel stochastic hybrid predator-prey model with fear effect as follows

a(é()(d - n(f(t)))> B
a(é(t) +y

Tta(E(t)z + bgf(t))y] dt + a(€(t))x dB(1), (1.1)
D)y d(&(t)) — 5(£(t))y} dt + o (&(t))y dB(t),

where x and y denote the density of prey and predator population, respectively. r denotes
the birth rate of prey, 1 represents the cost of minimum fear and n € [0, 1], « stands for the
level of fear with prey population, v and § represent the intra-species competition of prey and
predatory, respectively. u, d, 3, 6 represent the prey death rate, the predator death rate, the
predation rate, the conversion rate, respectively. m stands for the Beddington-DeAngelis

functional response. All parameter values of model (1.1) are positive constants for any k € M =
{1,2,---,N}. B(t) is a standard Brownian motion denoted on a complete probability space
(Q, F, {Fi}t>0,P) with a o-field filtration {F;};>¢ satistying the usual conditions and ¢ > 0
stands for the intensities of the white noise. £(t) is a continuous time Markov chain with values
in finite state space M.

For any vector g = (g(1),g(2), -+, g(N)), we let § = mingem{g(k)} and g = maxyem{g(k)}.
Suppose the generator I' = () nxn of the Markov chain is given by

P(E(t + A) = 1}g(t) = k) = { A oA, it kAL

1+vuA+o(d), if k=1,
where A > 0, % > 0 is the transition rate from k to [ if k # [ while Zfil Yk = 0. In this
paper, we assume Markov chain £(t) is irreducible and independent of Brownian motion and
assume vg; > 0, for any k # [. Assume further that Markov chain £(¢) is irreducible and has
a unique stationary distribution © = {my, 79, - , 7} which can be determined by equation
7' = 0 subject to Zszl 7, = l,and m, > 0, Vk € M.

Let w =Inx, v =1Iny. Then, by Itd’s formula, the random variables u, v satisfy

r(k)a(k)(1 = n(k)) “ Bk)e®
dut) = [ (k) + abyrer B 1+a(k>e“+b(k>e”}dt
+o(k)dB(t), (1.2)
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Obviously, the model (1.1) is equivalent to the model (1.2), then in this paper, some defi-
nitions and results of Markov semigroup, and some useful Lemma are listed in Section 2. We
investigate the existence and stability of stationary distribution of model (1.2) by using Markov
semigroup theory, which is proved in Section 3. Section 4 gives the extinction and persistence
of the stochastic hybrid model (1.1).

2 Preliminary

In this section, we provide some auxiliary definitions and results about Markov semigroup (see
[11, 16, 19]).

Let Ry = [0,400), Rt = {(21,++ ,an) €ER" 12, > 0,1 <i<n}. Let X=R3, X =B
be the o-algebra of Borel subset of X and m be the Lebesgue measure on (X, X). Let the triple
(X, %, m) be a o-finite measure space. Denote I be the subset of the space L' = L'(X, X, m)
which contains all densities, i.e.

D={feL':f>0llfll=1}

A linear mapping P : L' — L! is called a Markov operator if P(D) C D.
The Markov operator P is called an integral or kernel operator if there exists a measurable
function K : X x X — [0, 00) such that

Pia) = / K (2, y) f (y)m( dy)

for every density f. One can check that from the condition P(D) C D it follows that

//C(a:,y)m(dx) =1
X
for all y € X.
A family {P(¢)}+>0 of Markov operators which satisfies conditions:
(a) P(0) =1d, (Id denotes identity matrix);
(b) P(t+s) =P(t)P(s) for s, t > 0;
(c) The function ¢t — P(t)f is continuous with respect to the L' norm for each f € L1,

is called a Markov semigroup. A Markov semigroup {P(t)}:>0 is called partially integral, if
there exists ¢y > 0, and a measurable function K : (0,00) x X x X — [0, 00), called a kernel,
such that

[ k@ pymazym(ay) o (2.1)

and

Plto)f(z) > / K(z,y)f(y)m(dy),  for every f € D. (22)

A density f is called invariant if P(t) f, = f. for each t > 0. The Markov semigroup {P(t)}+>0
is called asymptotically stable if there is an invariant density f, such that

lim ||P()f — f«]| =0, for f € D.
t—oo
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A Markov semigroup {P(¢)}+>0 is called sweeping with respect to a set A € ¥ if for every f € D

lim [ P(t)f(z)m(dx) = 0.

t—o0 A
The following lemma summarizes some result concerning asymptotic stability and sweeping.

Lemma 2.11'6: 191, Let X be a metric space and ¥ be the o-algebra of Borel sets. Let {P(t)}i>0
be an integral Markov semigroup with a continuous kernel KC(t; x;y) for t > 0, which satisfies
(2.1)-(2.2) for all y € X. We assume that for every f € D we have

/Oo Pt)fdt>0, ae.
0

Then this semigroup is asymptotically stable or is sweeping with respect to compact sets.

The property that a Markov semigroup {P(¢)};>0 is asymptotically stable or sweeping from
a sufficiently large family of sets is called the Foguel alternative.
3 Asymptotic Stability of Stationary Distribution

In this section, we utilize the Markov semigroup theory to investigate the existence and stability
of stationary distribution of the model (1.2).
Denote E = R% \ U,

r(k)a(k)(1 = n(k))e” (1+0(k))B(k)e”
2

_ 2. u L= 7
U= {(U, v) €RT (k)" + (a(k) +ev) (1+a(k)e +b(k)e)?

— §(k)e’ = o}.

Theorem 3.1. Let (u(t),v(t),&(t)) be a solution of model (1.2) with any given initial value
(u(0),v(0), £(0)) € ExM. Then for everyt > 0, the distribution of (u(t),v(t),£(t)) has a density

m(t,u, v, k). And if 4 > —20v 4 U0 1§ PO gnd for k € M, (k)b (k) + ha(k) > 0,

1+dz*+l;y* 2&
and
N ~
~ * (1 — P . 51— p
Z'ﬂ—kﬁ:k} < min{(ﬁ — fbﬁy — — ul - 77)):6*2’ ((5— 776( - n))y*Q},
ot 1+ ax* + by* 2¢ 2&
N 1.2 %, o2(k)(1+a(k)z®)y* £ %\ - " ey
where ) Tk = 50°(k)x + S aTetg) (x*,y*) is the positive equilibrium of model (1.1)

k=1
without noise interference, then there exists a unique density 7. (t,u, v, k) such that

N
tli)rgokzl// |7 (t,u, v, k) — m(t,u, v, k)| dudv =0,
=1ys

that is, the semigroup {P(t)}i>0 is asymptotically stable.

Proof. The proof strategy for Theorem 3.1 can be shown in four steps:
Step 1. Applying the Hérmander Theorem!®!, we show that the semigroup is a partially
integral Markov semigroup, which corresponds to the following Lemma 3.2.

Lemma 3.2. The semigroup {T(t)}i>0 is an integral Markov semigroup.
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Proof. Let a(x) and b(z) are vector fields on R, then the Lie bracket [a,b] is a vector field

given by
[a,bbu):é(akgzb;@) Vo @), G2
Let _
o (,0) = ( mik) + O 0;(;;)()@‘ B~ T ates T3 )
~ (k)

1+ a(k)e* + b(k)e?

Then
ou 4 TR)a(k)o(R)(1 —n(k))e” B(k)o(k)e
[ar,a0] = ( et 9((]%%()5 62))2v (1 + a(k)e + b(k)ev) )
Tt alk)en 1 b(k)ev)? +a(k)o(k)e”
Consequently,
|ag (a1, a]|
_(—yer — TRa(R)A —n(k))e” (1 +0(k))B(k)e” ) g2
=(=® ) T (T alien e IR )o W £ 0,

which implies that ag(u,v

~—

, [a1, as](u, v) are linearly independent. Hence, for every (u,v) € E,

vectors ag(u, v), a1, as)(u, v) span the space E. In view of Hérmander Theorem!’], there exists a

smooth density K(t,u,v;ug,v9) € C™ ((0,00) x E x E) such that for every f € L'(E, B(E),

satisfying f > 0 and ||f]| =1,

F(6,0) = // (£, 056, ) (€, C) dE dC.

Then, the semigroup {7 (¢)}+>0 is an integral Markov semigroup.

m)

O

Step 2. We prove that the density of the transition function is positive on Rﬁ_ via using

support theorems!!> 3 26 which corresponds to Lemma 3.3.

Lemma 3.3. If 0(k)hi(k) + ha(k) > 0, k € M, then for any f € U,
/ Te(t)fdt >0, a.e.onk,
0

where U = {f € LY(E,B(E),m) : f > 0,]||f|| = 1}.

Proof. The It&’s SDEs in model (1.2) can be rewritten in the Stratonovitch’s form

duy =f1(ut, ve, §(t)) dt + o (k) o dB,
dvy = fo(ut, v, €(t)) dt + o (k) o dBy,
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where

_ r(k)a(k)(1 —n(k))
f1(u,v, k) =hy (k) + (k) + e

___ 0(k)B(k)e" v
fQ(uv’ka) 1 —|—a(k)e“ -I—b(k)e” - hQ(k) - 5(k)€ .

B Bk)e”
1+ a(k)e* + b(k)ev’

—(k)e"

(3.1)

Fix a point (ug,vo) € E and a smooth control function ¢ € L%([0, T]; R), consider the following
control system of integral equations

ugt) =uo + / (1 (s (5), v9(5)) + o (k)6) ds,
(3.2)

v(t) =vo + / (faluig(5), vg(5)) + 0 (k)) ds.

Denote Dy 00 be the Frechét derivative of the function f — x44;(T) from L?([0,T];R) to
R2, where X1} = (Upsf, Vpt7)T . If for some ¢ € L2([0, T];R), the derivative Dy, yy;p has rank
2, then K(T, u, v; ug, vo) > 0 for (u,v) = (ue(T), ve(T)).

For 0 <ty <t <T,let J(t,tp) be a matrix function such that J(to,to) = Id, W =
U(t)T (¢, to), where U = f'(uy,v4), £’ is the Jacobians of f = (f1(u,v), fa(u,v))", and here
fi(u,v,k) and fa(u,v, k) are defined in equation (3.1). Then

T
Doy o] = / T(T, 5)g(s)i(s) ds,

where g = (o(k),o (k)" .
Since we consider a continuous control function ¢, the model (3.2) can be replaced by the
following system of differential equations

iy TR ) B
v T e T e e T
) Bk |

v = — ha(k) — 8(k)e” + o (k).

1+ a(k)e* + b(k)e?

First, we claim that the rank of Dy, ;¢ is 2. Let € € (0,T) and f(t) = 1jp_, 1) for ¢t € [0, 77,
where 1{p_. 7 is the characteristic function of interval [T'—e¢, T'|. By Taylor expansion, we obtain

J(T,s) =1d+9(T)(T —s)+o((T — 9)).

Then
Dugvoief = €8 + %W(T)g + o(€?).
By calculating, we get
—y(k)er + a(k)B(k)e e Cr(k)ak)1 = nk)e’ B+ alk)e)e?
Ve ‘( e T 1 T T
(1 + a(k)e" + b(k)e)? 0+ alk)e" 1 b()e")?
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w_ T(k)a(k)o(k)(1 —n(k))e” B(k)o(k)e"
:( _7(]@')0'(]6)6 - , k(aéllzg +kev)v2 - (1 +a(/<:)e“ + b(k)ev)2 )
1B sy

(1+ a(k)e* + b(k)ev)

Since |g ¥(T)g| # 0, we get that g and ¥(T')g are linearly independent, which imply that
the derivative Dy vy;e is rank 2.

Second, we prove that for any two points (ug,vo) € E and (uy,v1) € E, there exist a control
function ¢ and T' > 0 such that (u4(0),v4(0)) = (uo, vo) and (ue(T),ve(T)) = (u,v).

Let wy = vy — Ouy, model (3.3) becomes

{ ug(t) =hy (ug (t), wy (1)) + (k)¢

/ (3.4)
w (1) =hg(ug(t), we(t)),

where

i g (£), w5 (£)) = (k) a?/il;fii)qs(é);e&()]zi)u) — y(k)ete®

B(k)ewe® fk)us (1)
T 11 alk)ens @ + b(k)ewe Dt Rus(®)’

a(k)ﬂ(k)(€w¢(t)ee(k)“¢(t) + e“¢(t))
1+ a(k)evs® 4 b(k)ews® b k)us ()’

_ 5(k)ew¢(t)69(k)u¢(t) +

Now we prove for any (ug,wp) € E and (u1,w;) € E, there exist a control function ¢ and
T > 0 such that (u(0),we(0)) = (ug, wo) and (ug(T), we(T)) = (u1, w).

We construct the control function ¢ later. First, we find a positive constant 7" and a differen-
tiable function wy : [0, 7] — E, such that wy(0) = wo, we(T) = w1, wj(0) = ha(ug, wo) = wd,
wi(T) = ha(ur, w1) = wd and

wyy(t) 4 0(k)hy (k) + hao(k) > 0, forte0,T]. (3.5)

Second, dividing the structure of the function w, on three intervals [0,€], [¢,T — €] and
[T —€,T)], where 0 < e < L.
It follows that we can construct a C2-function wy, : [0, €] — E such that

we(0) = wo, wy(0) = wé, wg(€) =0

and w, satisfies (3.5) for ¢ € [0, €]. Analogously, we construct a C*-function wy : [T'—¢€,T] — E
such that

we(T) = wy, wl(T) = wi, wy (T —€) =0

and w,, satisfies (3.5) for t € [T — ¢, T).
Taking T sufficiently large, we can extend the function

wy : [0, N[T —€e,T)] = E

to a C?-function wy defined on the whole interval [0, T'] such that the function z, satisfies (3.5)
on [0,7]. It follows that we can find a C'-function x4 which satisfies the second equation of
(3.4) and finally we can determine a continuous function ¢ from the first equation of (3.4).
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Hence, we can prove that for any two points (ug,v9) € E and (u1,v1) € E, there exist a
control function ¢ and T > 0 such that (u4(0),v4(0)) = (ug,vo) and (ug(T), ve(T)) = (u, v).

Finally, based on the support theorems (see [1, 3, 26]), we obtain the positivity of K, which
implies that [ 75 (t)fdt > 0, a.e. on E. a

According to Lemma 3.2 and the Section 5 in [22] for any ¢ > 0 the distribution of the
process (u(t),v(t),£(t)) is absolutely continuous, then its density p = (p1, pa,--- , pn)7 satisfies
the master equation
9p
— =T'p+ Lp, 3.6
5t p+Lp (3.6)
where Lp = (L1p1, Lapa, - Lnpn)T.

Let A be a constant such that A > maxj<y<n{—7kx} and @ = A7'I" 4+ 1. Then equation
(3.6) becomes

)
55 = \Qp— Mo+ Lp. (3.7)

Now, let Y = X x M, G be the o-algebra of Borel subsets of Y, and let m be the product
measure on (Y, G) given by m(B x {k}) = mB for each B € ¥ and k € M. Obviously, Lp
generates a continuous Markov semigroup {7 (¢)}:>0 on the space L'(Y,G,m), given by the
formula

T(t)g = (lrl(t)gaﬁ(t)ga e 7TN(t)g)’ g(u,v,k) € LI(Y,G,T;L).

It is obvious that the space L*(Ex M) and L!(E) x - - - x L*(E) can be identified and therefore
the semigroup 7 (¢) is well-defined duo to M is a finite set.

From the Philips perturbation theorem*?!, equation (3.7) with the initial condition p(0, u, k) =
f(u, k) generates a Markov semigroup {P(t)}+>0 on the space L' (Y) given by

7%0f::€*t§§A"S“Nwﬂ
n=0
where SO () = T (t) and
S () f = /Ot SOt —$)QS™ (s)fds,  n>0.
Step 3. Verify that the Markov semigroup satisfies the “Foguel alternative”, that is, the

semigroup {P(t)}+>0 is asymptotically stable or sweeping with respect to compact sets, which
can be seen in the following Lemma 3.4.

Lemma 3.4. If 0(k)hi(k) + ha(k) > 0, k € M. The semigroup {P(t)}1>0 is asymptotically
stable or sweeping with respect to compact sets.

Proof. First, according to Lemma 3.3, and using the similar proof to Lemma 2.3 in [15] (or
Lemma 4.4 in [12]), we can prove

/ P(t)fdt >0, a.e. on Y.
0

Then, applying the similar arguments to Corollary 1 in [23], we obtain that for every vy € Y
there exist € > 0, t > 0 and a measurable function x > 0 such that

[0, Kituo) = x(w
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for u € Y and v € B(vp, €), where B(vg, €) is the open ball with center vy and radius r.
Finally, by virtue of Lemma 2.1, the proof of Lemma 3.4 is proved easily. O

Step 4. We prove that semigroup {P(¢)}:>0 is asymptotically stable.

According to Lemma 3.4, the semigroup {P(¢) }:>o is asymptotically stable or sweeping with
respect to compact sets. In order to prove that semigroup {P(t)}>0 is asymptotically stable,
we need to construct a non-negative C?-function V and R > 0 such that

sup AV (u,v,k) <0

u2402>R?
where
. _ k) (O?V PV OV ov ov
ﬂ( (U’U ]f (a auav+ avz)_fl(u7v7k)%_f2(uav7k)%
+ Z ’}/kl u ’U,l) - V(uvvvk))a
kL k,1EM

where fi(u,v, k) and fa(u, v, k) are defined in equation (3.1).
Since the matrix T' is irreducible, there exists a solution @ = (wy,ws, - ,wn) of the
Poisson system such that

N

I'w+ k= Z’l‘rk,‘ikl,
k=1
where & = (k1, K2, -+ ,kn)T and 1 = (1,1,---,1)T, that is, for any k € M, we have
N
Z ’ykl(wl—wk)—FfQiZﬂ'ka.
k#lk,leM k=1

Constructing a C2-function V:

ev 1+ a(k)x* e’
) =(e* — 2% — 2% In — _ TV (o ot — oyt ln —
V(u,v, k) (e x* —x nx*)+9(k)(1+b(k;)y*)(e Yy -y ny*)+(wk+|w|),

where (z*,y*) is the positive equilibrium of model (1.1) without noise interference.
Then, by calculating, we have

V(e r(Ra(k) (1 —n(k) Blk)e”
SV =(e" — ") (I (k) + a(k) + e’ T T e +b(k)e”>
1+ a(k)e* Ok (k)e"

a5 Y (T amer e ~ 26— 90")
‘72(’f)(1+a(/~”~)l‘*)y*Jr Y

1
+ —o?(k)x* +

2 20(k)(1 + b(k)y*) kALK lEM
- Y e a(k)B(k)y*(e" — z*)?
=B =)+ G e by )(1+ a(k)e* + b(k)ev)
B b(k)B(E)(1 + a(k)z*)a*(e” —y*)*
(L4 b(k)y*)(1 + a(k)z* 4 b(k)y*)(1 + a(k)e* + b(k)ev)
r(k)a(k)(1 = n(k))(e* — 2*)(e” — y*)

1 2 *
@l ty)am ey a0 B



10 HK. QI, B. LIU, S. LI

) k£l k,lEM
a(k)B(k)y* (k)X =0\, w2
== (Wg) T T1talk)z + ok 2a(k) )(e —)
N
- (5(k) - W (e" —y*)? +I;7rm
) apy* FA=DY w
=" (7_ 1+az* + by 24 >(e —a)’
N f(l - fl) v %\ 2 al
— (6— 55 )(e —y") +;7rkmk.
Under the conditions
N §
[ (x apy* F(L=7)\ w2 (5 TA=1)\ .2
’;”’““’“<mm{(7_1+d$*+3y* Y )x ’(5_ 2 )y }

for k € M, we can imply that there exist R € RT large enough such that

sup &V (u,v, k) <0

u24v2>R?

Hence, by applying similar arguments to those in [18], the existence of a Khasminskii function
V implies that the semigroup is not sweeping from the ball {u? + v? < R?} € B(E), then,
we obtain that semigroup {P(¢)}:>0 is asymptotically stable. It completes the proof of the
Theorem 3.1 O

4 Extinction and Persistence

Consider the auxiliary equation

{ AX(t) = [(r(k) = (k) X (1) = /(W) X3(0)] dt + o (K) X (2) dB (1), w

X(0) = z(0) > 0.

Using a method similar to that in Lemma 2.3 in [4], we can obtain the following Lemma 4.1.
Denote

o* (k) P
Ri(k) =r(k) — p(k) — . R} = Zﬂle(k)

Lemma 4.1. (i) When R <0, X(¢) is extinct, i.e., . li$ X(t)=0 as.
— o0

(ii)) When R; > 0, X(t) is persistent in the mean and has a unique stationary distribution
o(X, k).

Remark 4.2. Applying the comparison theorem of stochastic differential equation™!! results
in

z(t) < X(t), a.s.
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Denote
+oo 02
Ro(k) :/0 Z(i)f((:));g(x, BACEE) — (d(k) + 280),
Ralh) = o) - 2RI =)

where o(X, k) is defined in Lemma 4.1.
Theorem 4.3. (1) When R < 0, prey x(t) is extinct, i.e.,

lim z(t) =0, a.s.
t——+o0

(II) When Rj = Zgzl mrR2(k) <0, predator y(t) is extinct, i.e.,

t_l>1+moo y(t) =0, a.s.
(III) When R; > 0 and R§ < 0, predator y(t) is extinct and prey x(t) is persistent in the
mean, and has

S

liminf(xz(t)) > i > 0, a.s.
v

t—+oo

(1V) When Es = Zszl ij%vg(k) > 0, predator y(t) is persistent in the mean and has

a }?25 >0, a.s.

liminf(y(t)) > == — <
i it > S aa v dan
Proof. We can use the comparison theorem of stochastic differential equation and the results
of Lemma 4.1 to prove (I-IV).
(I) Utilizing It6’s formula yields

a(€(t) (1 — (&)

dina(t) =[r(e(e) () + L) — (Ew) e
_ (€(®)y(?) o2(£(t)) i

D b ET D~ s ) o) dBw

<[re) - ntew) - 5 —aewna)] de+ o) aBe. @2

Integrating (4.2) from 0 to ¢ and then dividing by ¢ on both sides yields

n —In k a?(&(s '
M S%/o (r(g(s))—u(g(s))—y) ds+%/0 o(€(s)dB(s).  (4.3)

It follows from the ergodic property of £(t) that

t—+oo

1 [t a
lim sup — / Ri(&(s))ds = Z 7Ry (k). (4.4)
0 k=1

Taking the limit superior of both sides of (4.3) yields, and then applying the ergodic property
of (4.4), one can calculate that

Inx(t
lim sup nz(t)
t— 400 t

N
< Zkal(k‘) <0, a.s.,
k=1
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which implies

lim z(t) =0 as.

t——+o0

(IT) Utilizing Itd’s formula gets

Dyt =( OB _ ey ey - )Y 4

L+ a(&(2))x(t) +b(E(8)y(t) 2
+o(&(1) dB(1)
:(9(€(t))ﬁ(§(t))X(t) _ BE@)BEMNXE) | 0(&(1))B(E(1))(t)
NX(E) T+ a(€@)=(t) + b(E(1)y(?)

:(9(£(t))ﬂ(£(t))X(t) 0(£(£))B(E
L+a(€()X (@) (1+a(&)X(#)(1 +alé(t

and

+ 8(6() )u(0)] dt + o ((6) dB(2). (4.6)

(ol
=+

Integrating (4.5) from 0 to ¢ and then dividing by ¢ on both sides yields

ny(t) ~Iny(0) _1 [MOEEDBEEDX() 1 [1 Ry
sy e 1, (e ) a

1 t
+¥/0 o(£(s)) dB(s). (4.7)

By the ergodic theorem, one gets

1 [POE)BEE)X(S) s (< 0(R)B(R)X
tili“ooi/o 1+ a(€(s)X (s) ds_;/o T+ a(h)x QORdXR), - as.

It follows from the ergodic property of £(¢) that

t—too U

1/t al
lim sup ~ / Ry(&(s))ds = > miRa(k). (4.8)
0 k=1

Taking the limit superior of both sides of (4.7) yields, and then applying the ergodic property
of (4.8), one can calculate that

Iny(t
lim sup ny(t)
t——+oo t

N
< Zkag(k‘) <0, a.s.,
k=1
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which implies

lim y(t) =0, a.s.

t——+o0

(ITI) Utilizing It6’s formula yields

a0 LT (et - atetsn - 5 as

t t

L il
tA L+ a(€(s))
(

From the Theorem 4.3(II) and equation (4.9), for any € > 0 there is T > 0, when t > T,

nr —Inx ¢ 0'2 S
2t L (rteenmtes) - nteto) - 5 s
L[ r(E)alEe)d - nE) L[
¥ /' e | ety d

Since € is small enough, we have

t 0_2 .
t [ (rtetpmtetsn - nteten - =) as
1t rEe)aE =) 1
i t/o a(€(s)) + € d | B(&(s))eds > 0.
Thus
ltlinﬁgof Zﬂle E > 0, a.s.

(IV) Applying Itd’s formula to model (4.1), we obtain

In X (¢) — In X (0) :1/0 (r(é(s)) — u(&(s) = 2 (52(5))) ds

4 4

1

—1 [ aeenx s+ [ otels) ane),

and from equation (4.9)

22 o2 [ (rstomteten - ute) - =5 ds - [ telonate)as

t “t Jo t

1

t 1 t
~1 | s s+ 1 [ atean.

Then, one can derive that

1

¢ [ et - x () as
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> [ ateenmoas— 1 [ reena - aends - =R G
Then substituting (4.10) into (4.6) and combining Lemma 4.1, we have
nyt) 1 [* 9(5(8)) (€(s)) X (s) b5y +05%a + day [
P =1 / W)X () T e /0 y(s) ds
Y o?(£(s)) _ 0(E())BE))r(E(s) (L = nE()))Y
t/()((”” 2 ES) )¢
+ %/O o(&(s)) dB(s) + lnyt(O). (4.11)
Taking the limit superior of both sides of (4.11) yields
o (ﬁ
glinig.gf(y(t)) > 055 1 852 d’y Z 7rkR2 a.s.
O

5 Conclusion and Numerical Simulation

In this paper, we use the Markov semigroup theory to investigate the stationary distribution
of a novel stochastic hybrid predator-prey model with fear effect and Beddington-DeAngelis
functional response. We have obtained the existence of asymptotically stable stationary distri-
bution of the stochastic hybrid model, which can converge in L' to an invariant density under
appropriate conditions in Theorem 3.1. Furthermore, the conditions for extinction and persis-
tence of the stochastic hybrid model are also derived, as shown in Theorem 4.3. Specifically,
it is shown that (i): the prey species will be extinct when R§ < 0, while prey species will be
persistent in the mean when R; > 0; (ii): the predator spec1es will be extinct when R3 < 0,

while predator species will be persistent in the mean when R2 > 0.
Let £(t) is a right-continuous Markov chain taking values in Ml = {1,2} and the generator

I" of the Markov chain is
r— -0.7 0.7 .
0.3 -0.3

Then we obtain the unique stationary distribution
7w = (m,m2) = (0.3,0.7).

We choose the values of the parameters in model (1.1) as follows

r(1) =08, «(l)=08, B(1)=06, a(l)=0.1, b(1)=0.15 d(1)=0.1,
p(1) =02, n(1)=064, 5(1)=04, ~(1)=05 6(1)=08, o(1)=0.2,
r(2) =0.75, a(2)=0.7, B(2)=07, a(2)=02, b?2) =02, d(2)=02,
1(2) =02, n(2) =082, 8§(2) =034, ~(2)=05 6(2)=0.76, o(2)=0.1

Note that

(z*,y*) = (0.5602,0.4133), 4 =0.5>
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. (1 — 7
5—0310> 011 _ o057,
2¢

0(1)h1(1) + ho(1) = 0.3536 > 0,  6(2)h1(2) + ha(2) = 0.4786 > 0,

ﬁ — 0.0086 < min { (5 - 1+§f*y*+ - )y (D),

= min{0.076,0.0229},

which means that the conditions of Theorem 3.1 are satisfied. Therefore, the model (1.1) has
a stationary distribution and its asymptotically stable (see Fig.5.1).

(@ ‘ )
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Fig. 5.1. (a): the Markovian chain of model (1.1). (b): the sample path of z(t) and y(¢).
(c): the smoothing curve of the probability density functions of z(t). (d): the
smoothing curve of the probability density functions of y(¢).
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