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ARTICLE INFO ABSTRACT

Keywords: Providing additional food supplements to predators is one of the crucial and effective tools for
Predator—prey model biological conservation and pest management, which has been widely recognized and validated
Reaction-diffusion

by theoretical and experimental scientists. This paper focuses on the existence and uniqueness of
stationary distribution of a stochastic reaction-diffusion predator—prey model that incorporates
additional food for predator and fear effect for prey. It reveals that spatial diffusion is beneficial
for maintaining the steady state of the model, whereas environment white noise has a negative
effect.

Additional food
Environment white noise
Stationary distribution

1. Introduction

Understanding and controlling ecological systems and protecting them has long been a topic of active research for biologists
and mathematicians. One promising approach for protecting certain species in ecological systems is to provide additional food to
predators, which reduces predation and killings. Recently, scientists have demonstrated that this approach is widely recognized as
one of the most important and effective tools for biological conservation and pest management [1-5]. This approach is primarily
aimed at providing predators with alternative food supplements to reduce hunting of previously targeted species. However, the
spatial diffusion of organisms and the environmental noise may affect the dynamic behaviors of prey and predator populations
simultaneously in nature under some special scenarios. Therefore, it is of great research value to explore the joint effects of spatial
diffusion and environmental noise on the dynamic behaviors of prey and predator. With the help of a bio-mathematical model, we
propose the following stochastic reaction—diffusion predator-prey model with additional food for predator and fear for prey based
on previous research [4,6]

du(t, x) =[ d, Au(t, x) + rou(t, x) (q + %) — @t %)
Pu(t, x)v(t, x)
€+ 6& + u(t, x) + pu(t, x)
cput, x) + Hu(t, x)
€+ 6& + u(t, x) + pu(t, x)
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where u and v represent the biomass of prey and predator, respectively. r, stands for the intrinsic growth rate of prey. a stands for
the decay rate due to intra-species competition. n stands the cost of minimum fear with € [0, 1] and « is the level of fear with
prey. f is the rate of predation. ¢ and m respectively are the conversion efficiency and mortality rate of predator. ¢ is the quantity
of the additional food supplied to the predator, and p is the strength of mutual interference among predators. ¢ is normalization
coefficient relating the densities of prey and predator to the environment in which they interact. § is the ratio between the handling
times towards the additional food and the prey. 6; > 0 (i = 1,2) represent the intensities of the white noise. d, > 0 and d, > 0
represent the diffusion rate of prey and predator, respectively. 4 is the usual Laplacian operator in Q2 C R, O is a bounded smooth
domain of R/(/ > 1), n is the outward normal to d©. There is no population flux across the boundaries due to the Neumann boundary
conditions. W,(t, x) and W,(t, x) are L*(®, R)-valued Wiener processes [7].

For model (1), we mainly investigate the existence and uniqueness of stationary distribution. In fact, there are few studies on
the stationary distribution of the stochastic partial differential equations (SPDEs) models [8-10]. As we know, Liu [8] considered
stationarity of a class of second-order stochastic evolution equations with memory, driven by Wiener processes or Lévy jump
processes in Hilbert spaces, and Pan et al. [9] has applied this strategy to explore the existence and uniqueness of stationary
distribution of a stochastic reaction—diffusion vegetation-water model disturbed by Ornstein—Uhlenbeck process. In this paper, we
also apply the strategy in [8] to investigate the existence and uniqueness of stationary distribution of the model (1), which is
presented in Section 2.

2. Stationary distribution

From [8], define

i

H = {qo g e L20), Z—"’ € 120), i = 1,2},
X

and H~! is the dual space of H. Denote || - || is the norms in 7, and (-,-) is the duality product between H and #~!. Denote £(H)
to be the set of all bounded continuous real-valued functions over H, where H = H x H. Let B(H) is the Borel algebra over H, then
P(H) is the space of all probability measures over (O, B(H)).

Definition 2.1 ([11]). For all solutions #(t, x) = (u(t, x), v(t, x)) € H of the model (1), if exists a probability measure = € P(H) such
that

(@) =r(Pg),
where

7(g) = / g(&)x(d$) and P;g(8) 1= Eg(n(r, x,£)), g € L(HD.
H
then a probability measure = € P(H) is a stationary distribution.
Moreover, for x|, n, € P(H), define a metric on P(H) by

/g(f)ﬂl(dé)—/g(C)ﬂz(dC)',
H H

d(zy, mpy) = sup
gEM

where

Mi={g :H->R, |g)-gDI<IE-CIl. Ve, w € Hand [g()] < 1}.

Hence, P(H) is complete under the metric d(.,-).

Lemma 2.1. There exists a positive constant K such that

/ (u(t, X) + lv(t, x)) dx < K as.
© C
Proof. Define V(¢,x) = f@ (u(t, x)+ %U(l, x)) dx. Applying It6’s formula leads to
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BEu(t, x)
€+ 6& + u(t, x) + pu(t, x)

2
< <M + £> dr - m/ <u(l, x)+ M) dxdr + / oqu(t, x)dxdW, (1) +/ 2U(t, x)dxdW, (1)
P o ¢ o oc

- ﬂu(t,x)] dxdr + / oyu(t, x)dxdW, (1) + / 22 yt, x)dxdWs (1)
c © © C

4a
< [Kl - mV(t, x)] dr + / oqu(t, x)dxdW, (1) + / %U(I, x)dxdW, (1),
o o

2
where K| = Corm? 4 B

a p
Next, we use the standard method in Lemma 2.3 in [12] to prove it, which is omitted here to avoid repetition. []
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Lemma 2.2 ([8]). Suppose that for any bounded subset U C H and ¢ > 1,
(D) sup;sg supsey EllA, X, &)1 < oo;
(i) lim, o, sup; ey Ell (1, x, &) = h(t, x, O|IY = 0.
Then the process h(t, x, &) has a stationary distribution.

To prove the existence and uniqueness of the stationary distribution of model (1), we only need to verify that (i) and (ii) of
Lemma 2.2 are satisfied, that is, to prove the following Theorems 2.1 and 2.2.

Theorem 2.1. For any ¢ > 1, we have

sup E ([lut, )l + o, x)||7) < Gy,

0<t<T

where C, =2 (|lugll” + llugll) 27T is a constant, where

1 Ceple+(1+6)E1 | 1
€, = max {fro + 56 = o} + 8V2¢%62, v tal¢- Do? +8v27%62 ¢

Proof. First, for # > 1, applying Itd’s Lemma to |lug||” + [|v,ll¢ yields

llutt, N + llv, )11

t
=[lu(0, )11 + 1o, )II* + /0 < eronllutr, NI = Callu(r, )" = £mllver, )11
-2 road —mur, x) \ /-2 Bur, x)u(t, x)
+ 0l <u(r, > o+ u(r, x) Al 0 ur %), €+ 6 + u(r, x) + pu(r, x)

2)
+ £l 0lIE 2 <U(r, ). - :‘; (éuiru ’3 fo;’;g)x) > + d||ur, )N 2 Aur, x), u(r, x))

+ 7d,||u(r, OS2 (4o(r, x), v(r, %)) + %f(f -1 (G%Hu(r, 0Ol + ¢7§||U(r, x)||f) > dr

t t
+ / oy lutr, 0lIYdw, (1) + / 2oy llvr, )N AWy ().
0 0

Taking the expectation and sup(-) to (2), and then using Young inequality and Burkholder-Davis—-Gundy inequality, one has
sup E([lutt, 0)ll” + [l 0)ll)
0<I<T

t
<E(Iu(0. )1 + 1000, )7) + sup E / Crollutr. N = alutr, o)+ + ZLLETAXIED, e
o<t<T Jo €+ 6¢

_ _ 1
= £duCr, Ol 2NV 0N = £d, o, )N Ve I + S = 1) (o lur, 01l + o3l 0l ) ) dr

+ sup E
0<t<T

1
/0 o llur, )17 AW, (r)

1
+ sup E‘/ o, llo(r, x)||IY AW, (r)
0<t<T 0

t
<E ([lu(0, )1 + |00, x)[|) + sup E / (fro+ %f(f— 1>a%) llugr, x)||1* dr
0

0<t<T
" tePle+(1+6)E] 1 2 P
E L -1 d
¥ ozier /0 < croe . T2 )”2>”U(r’x)” '
1

1
¢ ! 2 ¢ ! 2
+4v2 sup Ellut, x| 2 [ / A2 u(r. 0 dr|” +4v2 sup Eflo.0ll2 [ / fzoélluv,x)ufdr]
0<t<T 0 0<t<T 0

1
1 1
<E (Jlu(0. )1 + [lv(0.x)[I) + sup E / (fro+ ~O(¢ - 1>af) lluCr, )|”dr + = sup E ([lutt, )| + lo, )11”)
o<i<t Jo 2 2 o<t

T teple+(1+8)E 1 !
/0 ( et ot +§f<f—1>o§> lloGr, )11 dr +8V/2 sup IE/0 22 (o7 lutr, Il + o3 llo(r ) 7) dr

0<t<T

+ sup E

0<t<T

t
1
<E (Jlu©, 2)lI” + 1100, 0)||") + € sup E / (lutr, 0l + llor, ON7) dr + 5 sup B (Jlute, 0ll” + o, 017) -
0<i<T 0 0<1<T

Hence,

0<t<T

t
sup E (Jlutt, )| + o, )N1”) <2E (llugll” + llvgll”) +2C, Sup E/ (llutr, 0N + lloer, 011 dr-
<<t Jo
By applying the Gronwall’s inequality, one gets

sup E (It 7 + o, DNT) <2 (Hlugl? + llogll?) 297 2= C,.
<t<

3
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The proof is completed. []

Theorem 2.2. Suppose that there exists a constant £ > 1 such that max {I,,1,} < 0, where

[ rola+ 1 =mK) B\ _(r-mK chle+ (6 + p)é)
"J< a +ﬁ+p> ( P P +68)
_ro(l=mK A+ =D+ G+ o 1,
= » +h/+ o+ 58) £3d, —m+ zf(f Doy,

+ﬁ> - ¢3d, +2¢aK + + %f(f— o7,

I,

with

«_ WV x, gl IV X, G )l
S = min < inf ,inf .
€l |ut, x, g w)|* sEH (e, x, ¢, )|
Then the model (1) has a unique stationary distribution = € P(H).

Proof. For all Z# > 1, A > 0, denote
o, x, ¢,y) =e* (|lutt, x, ) — u(t, x, y)||” + [[vt, x, ¢) — v(t, x,w)[|")
=" (Ilut, x, w)II” + 0t x, ¢, w1 -
By using It6’s Lemma yields

d0(. x. . ) =A0(t. x. b, y)dt + & [ 10t x. oIl 2t %, . ). routt. x. ) <n + M)
a+u(t,x,P)

a(l —n) ) B put, x, $)o(t, x, $)
a+ o, x,y) €+ 6&+ u(t,x,P) + pu(t, x, p)
But, x, y)o(t, x, w)
€+ 6E+u(t,x,w) + pu(t, x,y)

+ W G200 5 ), — @(;jf ;‘(’t"if ;fl”;’;;‘t’ D =
cPu(t, x,w) + Ev, x, )

- — 14
€+5f+u(t,x,lll)+pl}(t,x,y/)> Cm|lj(t, x, g, @)l
1

+ £d, 1t x, ) A X, ), 160, %, §y0) + S € = Dl x, )l

— rox(t, X, w) (11 +

) = Zallut, x, ¢,y (lutt, x, §) + utt, x, w)||)

3
+ 2d, |t x. by Ayt x, ) (1 X o)) + %f(f = Dot x, . )| ] dr
= Zoy|[it, x, b, w)|| AW, (1) = £ 05, x, b, y)|“ e AW (1)

<40, x, ¢, y)dr + e | £1at, x, b, w)|I” T2t x, b, w), Py)

= Zallut, x, b, y)I” (lut, x, ) + u(t, x, )| + |t x, g, w)I* =2 (¢, x, b, w), Py)
= £d, i, x, ¢, w)I” 2 Vatt, x, g, w)l|* = £d, e, x, w2Vt x, b, W)

= £mlit, x, p.w)ll” + %f(f = Dol x, g, w)lI” + %f(f - Dozl x, p.w)ll” | dt

= toy|lut, x, gl AW, (1) = Co, |11, x, W)l X AW, (1),

where
1- 1-
P, =rou(t, x, ¢) <r/ + %) —rox(t,x,y) <11 + %)
L Puexptxd)  pultxp)otxy)
€+ 8E+u(t,x, )+ pu(t,x,d) €+ 6E+u(t,x,w)+ pv(t,x,w)’
_ _ Bt x, )+ vt x.d)  cpult, x, y) + vt x, v)
27 e+ SE+ult,x, ) + pv(t,x, ) €+ 6E+ut,x,y)+ pvt,x,y)

Note that

1t x, ¢, w)||f—2<z<t, X, b p), P1>
s a(l —n) _ roe(l —mudt, x, y)t, x, ¢, y)
<N, x, b, )l <l(t, X, 9, ¥),ry <11 MPE— ox, ¢)> ut, x, ¢, y) @t oG x. )@t v xw)
_ Ple+ 68+ pu(t, x, y)]u(t, X, Pt x, §, ) + fle + 6 + u(t, x, P)lu(t, x, y ), X, . y)
(€ + 6& +u(t,x,p) + pu(t, x, p))(e + 6& +u(t, x,y) + pv(t, x,¥))

1-nK
<t ("o + %) It x, b, w)II” + ¢ <¥ + ﬂ> It x, &, w)II* = e, x, b, ).

4
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Then, using Young inequality leads to

1-nK
¢ (% N ﬂ) et x. o) I e, o)l

1-mK 1-mK
<= (22 g ) eox gl + (22 ) e bl

Thus

1-nK 1-nK
f||z<r,x,¢,u/)||"-2<z<z,x,¢,w),P.> f(r‘)(”( nk) ﬂ+é> - <¥+ﬂ> it x. o w) I

p
1-nK
+ (’0( " +ﬁ> 1¢t, x, b I’

(€]

Similarly,

el x, ¢, w>||“<1<t, x, ¢, ), P2>

/-2 cPpélle + 6& + u(t, x, y)(t, x, b, w) — v(t, x, y)u(t, x, p, y)]
<l x. @ w)ll <J X W), et %, @) + polt, x, D))(e + 6 + ult, %, w) + polt, X, 0)
+ cfle + 6& + pu(t, x, y)]o(t, x, §ut, x, p,w) + cfle + 6& + u(t, x, p)Ju(t, x, y )1, x, P, y)
(€ + 6& +u(t, x, ) + pu(t, x, p))(e + 6& + u(t, x, ) + pv(t, x,y))
cfle+ (6 +p)é) ¢ B +p)—1)(e+ (5 +p))
<—p(€+5§) [t x, p, u)|I” + (e 1 68)
Substituting (4) and (5) into (3), and then integrating both sides and taking expectations, one gets

(5)

I, x, g w)ll”.

t
Eo(t, x,d,v) <EOQ, x, d,y) + AE/ O(r,x, p,w)dr
, ’ , ®)
+ IIIE/ e i, x, p )| dr + IZIE/ e tr, x, b, w)l|f dr.
0 0

Taking the SUPy ey ON (6) results in
t
sup EO@, x, ¢, w) < sup EOO, x,d,w)+ (4 + C3) sup IE/ O(r, x, p,w)dr,
oyel $.wel 0

where C; = max {I}, I, }.
Using the Gronwall’s inequality leads to

sup EO, x, ¢, w) < sup EO(0, x, ¢, y)eH+ 3

$wel oyel

That is,
sup E ([l x. p.w)I” + (. x. . 9)||7) < sup EO(O, x, . y)e .
¢yel pyel

Assumption C, < 0, then when 7 — o0, one has

lim sup E ([lut, x, g, w)ll” + Ut x, g, w)lI”) =
t—o0 dwel

Thus, there has a stationary distribution = € P(H).
Next, we certify the uniqueness. Assume that =’ € P(H) is another stationary distribution of the model (1). By a straightforward
calculation, we obtain

lm(g) — 7' ()| < /HXHIPrg(a") - P,g(y)|n(d)r’ (dw) < Cse™,
where Cs > 0.
Thus
tl_i}glﬂ(g) -7'(g)=0.
Therefore, we can deduce that the model (1) has a unique stationary distribution. []

3. Conclusion

This paper investigates the conditions for the existence and uniqueness of stationary distribution of a stochastic reaction-diffusion
predator—prey model with additional food for predator and fear effect for prey according to a suitable Lyapunov functionals. In
maintaining a stable coexistence state of populations in the model, spatial diffusion is a positive impact, while environment white
noise plays a inhibiting role in the steady state and can destroy it. The research results can provide theoretical guidance for solving
practical biological control problems, such as biological conservation and pest management.
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